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NEW METHODS OF STUDYING TELESCOPIC LENSES WITH REMARKS
ON ASSESSING ,QUALITY

Y. Vaisala

I. Introduction /3*

1. The most natural method for testing telescopic objec-
tives in the observatory is to view a celestial body directly
through the telescope. In general, close double stars have
been considered suitable objects for this purpose. Nevertheless,
a much more reliable and detailed picture of the quality of an
objective is obtained by viewing extrafocal images of the stars
[1]. This technique, to which many famous opticians for objec-
tives have resorted, is so sensitive that the objective can
confidently be assumed faultless in practice when viewing
extrafocal images does not turn up any appreciable aberrations.
Some idea of the quality of a photographic objective can also
be deduced by photographing stars in very stationary pictures.
Since the image on the photographic plate is not the diffraction
pattern of the star at the moment, but the sum of the individual
momentary effects, air turbulence will make the image of the star
on the plate larger than the instantaneous diffraction patterns,
and this is why, in examining a photographic objective, defects /4
can be overlooked which would easily be detected in aiVisual-i
telescope of corresponding size through observation of stars.

Neither the techniques mentioned above nor the Foucault
knife-edge method usually employed by opticians permit more than
a qualitative determination of the flaws in an objective. In
order to compare the objectives of different observatories,
their defects must be determined quantitatively, just like other
defects in astronomical instruments: collimation errors, the
varying thickness of axle journals, etc. It is true that it is
less useful to know the defects in objectives than to know e.g.
the thickness of the axle journals in a transit, in the sense
that the results of observations would be correctable if the
errors were known. However, if an objective's errors were known
numerically, there would then be a basis for an impartial
judgment on whether the objective satisfied the requirements
demanded of a good lens, and that can be corrected if needed.
Moreover, if the errors in the objective are known, the worst
parts can be covered and its performance enhanced in this way.
As one example of the importance of studying the defects in
any objective, the 80-cm objective of the large photographic
telescope in Potsdam has been tested. Hartmann has given a
detailed description of this testing [2]. This is a good
illustration of opticians and astronomers cooperating to make

*Numbers in the margin indicate pagination in the foreign text.
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great improvements in an originally very defective objective.
A characteristic example of just how incorrect an assessment
of the quality of an objective can be without numerical infor-
mation on its defects is supplied by the 34-cm objective of
the smaller photographic telescope of the same observatory,
which has been studied precisely by Wilsing [3]. In this /5
instrument, which had been praised as "an excellent"optical
product" [3, p. 5], the zonal aberrations make the brightness
in the center of the diffraction pattern much less than that
in the center of a picture supplied by a flawless objective of
corresponding size, while the diameter of the diffraction disk
for this objective is somewhat smaller than that for an ideal
objective.

The most noticeable of the defects of an objective is
chromatic aberration, a defect which cannot be eliminated by
grinding, since it is inherent in the nature of the glass.
These days, the refractive power of a glass at different wave-
lengths is determined very precisely before it is used in the
manufacture of an objective, so that chromatic aberration can
be corrected for any two arbitrary wavelengths to the degree
permitted by the glasses employed. The remainder of the
chromatic aberration, the so-called secondary spectrum, can be
determined by the method reported by Vogel with the aid of a
spectroscope. Nowadays, a large error at the apex of the color
curve can only be due to major errors in the radii of the
surfaces of the objective, errors which can naturally be avoided
in careful work.

The situation is different for errors due to inhomogeneities
in the lens glass, and to discrepancies between the actual surfaces
and the mathematically calculated shapes -- for lenses, usually
spherical surfaces. Such errors appear as zonal aberrations,
including spherical aberration and astigmatism. All the efforts
of opticians are aimed at minimizing these errors. Astigmatic
errors are usually vanishingly small, at least in rather small
objectives. However, substantial zonal aberrations can occur in /6
both small and large objectives and mirrors. It is therefore
of particular importance that there be precise methods by which
zonal aberrations can be determined quantitatively.

Numerical determinations of shape defects (zonal aberrations
and astigmatism) of objectives were not carried out in observa-
tories until Hartmann invented his famous method of extrafocal
images [4]. The main idea of this method is as follows. A disk
is placed in front of the objective. There are many small holes
in the disk, dividing the light into thin beams. Either micro-
metrically or photographically, the position of this beam is
determined on two planes perpendicular to the axis of the
objective, one of the planes being closer than the focus, and
the other beyond it. The zonal aberrations and the astigmatism
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are determined from the measurements. Usually, the measurements
are taken photographically, since this minimizes the actual work
at the telescope, and the results are more precise than those
of visual measurements. Another factor is that the light beams
coming from different points on the objective can be photographed
at the same time, so that any motion of the telescope affects
all images in the same manner.

Apart from its good points, however, Hartmann's method has a
drawback which must always be recalled when it is to be employed.
Namely, the smaller the holes, the lower the accuracy of the
measurements in general, since reducing the size of the holes
increases the diameters of the corresponding diffraction patterns,
and this naturally reduces the precision of the measurements.
Moreover, even a slight irregularity in the shape of the holes /7
and any air bubbles in the objective induce irregularities in
the diffraction pattern thus detrimentally affecting the measure-
ments [5]. On the other hand, the holes cannot be too large,
because then they could not be made impervious enough and it
would no longer be certain that the objective could be held
errorlessly on a region of the size of the hole. In studying
an objective 8 cm in diameter, Hartmann used holes only 4 mm
in diameter [5]. The diameters of the corresponding diffraction
patterns were on the order of one arc minute. It is clear that
the precision of such patterns is many times smaller than the align-
ment accuracy of a pattern generated by the full aperture.

With very large objectives, the situation is quite different.
In this case, the holes can be several centimeters in diameter,
and the precision is then not much less than the accuracy in
using the objective with full aperture. The unsteadiness of
the images and certain other factors prevent measuring accuracy
from rising very much as the aperture is enlarged, as long as
the aperture is already several centimeters. Therefore, the
larger the objective, the smaller the role played by the unfor-
tunate circumstance mentioned above.

2. As observed previously, zonal aberrations are generally
much more noticeable than astigmatic errors. The former are
usually expressed by giving focal lengths for different zones
of the objective, reduced by a mean focal length. The zonal
aberrations can be graphically illustrated by plotting the
zones on a horizontal axis and the focal-length differences /8
on a vertical axis. Hartmann has published extraordinarily
valuable material on modern objectives [2],, presenting the
zonal aberrations of several objectives in both numerical and
graphic form.
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If the focal-length deviations are known, it is easy to
calculate the distribution of light determined by geometrical
optics in any arbitrary plane near the focus and at right
angles to the optical axis. The plane in which the concentra-
tion of the light is greatest can be considered the focal plane.
The smaller the area in which the light concentrates in the focal
plane, the better the objective is from the viewpoint of geo-
metrical optics. If the mean value of the lateral deviations
of all light rays in the focal plane is divided by the mean
focal length and the quotient multiplied by 206o000o , a number
T is obtained which has come into use as a measure of the quality
of an objective, as a so-called technical constant. This param-
eter is a suggestion of Lehmann [6]. T is approximately the
mean radius of the geometrical image, expressed in arc seconds.
In [5], Hartmann also calculated the value of T for all the
lenses he inspected.

Nevertheless, caution is advisable in assessing objectives
on the basis of focal-length curves and the constant T. It must
be recalled that geometrical optics ignores the phenomenon of
diffraction. If the defects in an objective are so large that
their effects far surpass those of diffraction, the distribution
of light in the focal plane can be determined quite correctly
by geometrical optics. However, the defects in astronomical /9
objectives ought to be so small that the distribution of the
light in the image will be mainly determined by diffraction and
not by zonal aberrations, because only then is it worth employing
the strongest magnifications with an objective. The distribution
of the light must then be calculated from diffraction theory,
since geometrical optics can lead to highly erroneous results,
as will be shown later in examples.

The technical lens constant based on diffraction theory
was defined by Strehl [7]. He proposes that the standard for
the quality of an objective be the brightness of the midpoint
of the diffraction pattern produced by the objective divided
by the brightness of the midpoint of a diffraction pattern
produced by an ideal objective of the same type. It would be
hard to find a more appropriate reliable quantity as a standard
of quality for an objective. Unfortunately, Strehl's constant
is not as widely used as it should be. This is probably due to
the fact that it is considered tedious to calculate it. The
greater popularity of the constant T may also be due lto its
simple interpretation as a measure of the size of the geometrical
image. This may perhaps ignore the fact that light rays in the
sense employed in geometrical optics do not exist and T can also
be assigned a physical interpretation.

3. The primary purpose of the present work is to describe
methods of determining defects in objectives, methods which



will be free of the drawback of Hartmann's method -- i.e. that
the precision decreases when the size of the holes is reduced.
The new methods will therefore make it possible to obtain /10
greater accuracy than in Hartmann's method, whenever permitted
by the pictures, and this fact will be demonstrated by direct
observations. In the same way,.the discrepancies between the
light front and a sphere will be determined without integration.
These discrepancies must be calculated when the distribution of
light near the focus is to be determined on the basis of dif-
fraction theory. The methods to be described are particularly well
suited for studying visual objectives, and I have visually
examined all the objectives used as examples, but this does not
prevent these methods from being used on photographic objectives
as well. A suitable method is also given for testing visual
telescopes equipped with neither an ocular micrometer nor cross-
hairs.

The methods to be described are based on observations of
diffraction patterns produced by the interference of light rays
passing through two, three,aor even four holes. In Hartmann's
method, a light ray passing through a given hole generates its
own diffraction pattern independently of the other light rays.
In the literature, I have found an article in which the joint
diffraction pattern of two holes was used to study optical
surfaces. Namely, Michelson [8] appears to have used the method
of two holes as long ago as 1918 to determine the errors of a
lens and a mirror in the laboratory. However, his method cannot
be successfully employed in practice in observatories for several
reasons, which I will give later. In optical workshops as well,
the method developed by the author of the present work ought to /11
be easier to use and more accurate than that of Michelson.

The last section of my treatise deals with the technical
constants of lenses. First, a proposed method for more efficient
calculation of Lehmann's constant is derived, and then it is
shown that the mean deviation of the light front from the surface
of a sphere is just as good a practical standard for the quality
of an objective as Strehl's constant. The discussion will be
illustrated by several typical examples. Finally, the suitability
of the Lehmann and Strehl constants as standards of quality for
objectives will be analyzed, the formulas derived will be
applied to several objectives, the zonal aberrations of which
I have found in the literature, and the refinishing of objectives
will be treated.
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II. The New Methods /12

Basic Idea of the Methods

4. The wave front of light arriving from an infinitely
distant point, such as a fixed star, is a plane. Passing
through a flawless objective, the wave front is converted to a
sphere, the center of which is at the focus of the objective.
In actuality, of course, all objectives are more or less flawed,
and thus the light front differs more or less from the ideal
surface, the sphere. The problem is now to discuss methods of
determining these discrepancies.

In Fig. 1, the solid curve is the light front and the
dotted line is a spherical surface differing only slightly
from the light front. 0 is the center of the sphere. The normal
to the surface drawn at point P of the light front intersects at
point Q the plane through point 0 and perpendicular to the optical
axis.

Hartmann's method involves
determining the position of point

P Q with the aid of extrafocal
images, i.e. determining the direc-
tion of the tangent plane to the
light front at point P. In the
introduction, it was pointed out
that diffraction makes it much
more difficult to carry out this
determination. In fact, the

0 existence of such a difficulty
would be immediately evident even
if we knew little of the real /13

Fig. 1. nature of light, since experi-
mentally, it is impossible to
determine the tangent of an

arbitrary curve or the tangent plane of a surface. On the other
hand, we can determine the position of the chord to a curve or
a surface or the position of a plane passing through three points
on a curved surface.

To study a light front, we then find natural methods by
looking for the position of a chord of the surface or a plane
passing through three points instead of a tangent line or plane.
We achieve this goal by placing a screen with two or three holes
in it in front of the objective, and allowing the light rays
coming from different holes to interfere with one another. Let
us assume that there are two small holes in the screen through
which two points. on the light front have been determined. In
that case, the well-known interference pattern formed by
parallel bright bands is produced in the focal plane. The
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central bright band is equally distant from the two points on
the wave front. By measuring the position of the central inter-
ference band, the direction of the chord connecting the two points
on the wave front can be detlermined.

By using a screen with three small holes at the vertices of
a triangle, an interference pattern composed of bright points
is obtained. If the position of the central point, which is /14
equally distant from the three points on the wave front deter-
mined by the holes, is measured, the direction of the normal to
the plane passing through the three points in question on the
wave front can be determined.

We arrive at other methods when we attempt to determine
the curvature of the wave front in the same way as radii of
curvature are measured with the spherometer. If the spherometer
has three adjacent feet, of which one can be extended and retracted
measurably, the radius of a circular arc can be determined.
Usually, however, the spherometer has three fixed feet forming an
equilateral triangle and a fourth foot at the midpoint of the
triangle, measurements being carried out for the latter. We
obtain a method for measuring the curvature of a wave front
which is analogous to the first spherometer model by employing
a screen containing three colinear small holes. An interference
pattern, again formed by bright parallel bands, is projected
on a movable plane, and the interference pattern changes when
the distance of the movable plane to the objective is changed.
One of the bands passes through the center of the circle drawn
through the points on the wave front determined by the holes.
By shifting the movable plane, the position of this bright band'
is discovered, and thus the radius of the circle determined. On
the other hand, if a screen with three holes at the vertices of
an equilateral triangle and a fourth hole at the midpoint of
the triangle is used, an interference pattern formed by bright
points is obtained, and the pattern varies when the movable plane
is shifted. One of the bright points is situated at the center
of the sphere passing through the points on the wave front deter- /15
mined by the holes. By shifting the movable plane, the position
of this point1 is ascertained, and the radius of the sphere
determined. This method is therefore reminiscent of the measure-
ments with a customary 4-foot spherometer.

The Two-Hole Method

5. Figure 2 depicts a meridian section through a light
front and a sphere differing very little from the front, namely
the reference sphere. The center of the sphere is 0 and its

ILater on, it will be explained how this band or point is
distinguished from the other ones.
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D2 -radius is b. The points P1
* P' - P ' and P2 are two points on the

*"- light front and Pi and P are
the points on the reference

-z sphere closest to Pl and P2
respectively. We term the
distances PIP1 = hI and P P2 =
= h2 the deviations of the

0-/Q light .front, taking these
deviations to be positive in
the case in which the light
front is behind the reference

Fig. 2. sphere at the points in question,
relative to the direction of
propagation of the light. Let
D be the length of the chord
PlP2*

Assume that the deviation hI is known. We can determine /16
the deviation h2 if we know the angle s between the chords
PlP2 and PP? . Let us imagine that the deviations are small.
We will consider E positive when h2 is greater than hl, as
depicted in Fig. 2. Then

h,=hl+*D. (1)

The angle s between the chords is equal to the angle between
the central normals PQ and P'O of the chords. We can determine
this angle if we know the distance n from 0 to the intersection
Q of the normal PQ and the plane passing through point 0 and
perpendicular to the optical axis, as well as the angle w which
this normal makes with the optical axis. n will be positive
if the point Q lies to the right of the optical axis, as in
the diagram, and negative if it is to the left of the optical
axis. Hence

r? COS m

b (2)

and, applying Eq. (1),

h, = hl + & cos cl. (3)

In practice, it can usually be assumed that cos w = i.

This is the basic idea by which the measurements will be
carried out in practice. In the immediate vicinity of the
objective, either in front of it or behind it, a screen is
placed in which small holes have been made at points P1 and P2
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The form of the interference pattern produced by the holes is
well known from physics texts. We first assume that the holes
are infinitely small in all dimensions, and that the light is
monochromatic at the wavelength X. On any plane extending in /17
the direction of the chord PlP 2 , a figure is formed which con-
sists of very many bright and dark lines, and which is symmetric
with respect to the normal plane of the chord P1P2 . The line
of intersection of this normal plane and the image plane will be
bright since it is an axis of symmetry of the figure. The spacing
of the lines is bA/D.

Since, in reality, the holes are finite, the lines can be
perceived only near the focus, and the number of lines diminishes
as the size of the holes increases. Moreover, if the light is
not monochromatic, the lines develop into spectra, so that only
a few lines can be seen due to the superposition of spectra of
different orders.

Determining the position of the central band: -- a measure-
ment which can be carried out either visually by means of a
micrometer or photographically -- simultaneously determines the
position of the point Q. For the point 0, any point as close as
possible to the focus in the plane of motion of the micrometer
hairline or on the photographic plate can be chosen. The difference
h2 - hi is determined with the aid of Eq. (3).

We then displace the screen laterally, so that the hole P1
arrives at the point previously occupied by P2 , and P2 comes to
a new point where the deviation of the light front is hi. If
we again measure the distance of the central bright ban , from
the point O, we obtain the difference h3 - h2 . Continuing the
observations in this fashion, we obtain the equations

h2 = hl + -6

D
ha = ha + D,

(4)

We can e.g. write hi = 0. Then, from the equations in (4), we /18
obtain h2 , h3 , h4 , . . . .

By this method, the deviations of a light front from the
sphere with center at 0 can be determined. The distance of the
crosshairs or of the photographic plate from the objective is
thus indicative of the radius of the reference sphere, and
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the point from which the distances n are calculated determines
the direction of the axis of the reference sphere. The devia-
tions of the light front from any other sphere, differing only
slightly from the reference sphere employed first, can be
calculated easily..,as!will be shown later, from the deviations
hl, h2 , h3 , . . . .

The shape of the holes in the screen could of course be
arbitrary, as long as the dimensions of the holes were sufficiently
small in all directions, but naturally the holes will be regular,
e.g. round or rectangular. Since the astigmatic errors will in
general be small in comparison to the zonaillaberrations, it is
best, when determining zonal aberrations, to make the holes
rectangular, with the long side perpendicular to the line con-
necting the holes, in order to obtain as much light as possible.

The two-hole method can naturally be used for determining
factors other than the zonal aberrations. With this method,
the direction of any arbitrary chord connecting two points on
a light front can be discovered. The entire light front can be
"leveled" by the two-hole method, in which case it is best to
first ascertain the deviations of just a few points on the surface,
and then starting from these, to determine the deviations of a
sufficient number of intervening points. The entire measuring
technique is highly reminiscent of the precision leveling of a
large area of land.

Three-Hole Method /19

6. As previously mentioned, the position of the plane
passing through three points on a light front can be determined
by using a screen with three holes. For the sake of symmetry,
of course, it is best to make the holes equally large and at
equal distances from one another. The form of the diffraction
pattern in the vicinity of the focus can be calculated in the
following manner, assuming that the holes are infinitely small
and that the light is monochromatic.

Let Pl, P2 , and P3 be three points at the vertices of an
equilateral triangle on a light front, and suppose that the
holes of the screen are located at these points (Fig. 3). We
employ a skew coordinate system, with the origin at the midpoint
of the triangle PlP 2 P3 , the x-axis through the point P1 , the
y-axis through through the poJnt P2 , and z-axis perpendicular to the
plane P1 P2P , the positive direction being that toward the image.
Let the distance of point P from the origin be r. We consider
the distribution of light in a plane E parallel to the xy-plane.
Let b beJth distance of the intersection of this plane and the
z-axis from the point P.
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The distance s of a point /20
x Q(Yrin,c) in the E-plane from

one of the points P(x,y,O) is
obtained from the equation

:., s, = (- ), + (y- g), -(z-. ) (y+-) P.

Since P lies on the light front,

b 1=z-' +y' -- + I
Fig. 3. and hence

aP g + (y- 2x) + (x - 2y) 9 + + 4' -

Assume that C and 5 are very small, so that

+y-2 x -2y ,
.26 267

Therefore, the distances from the point Q to the points Pl(r,0,0),
P2 (0,r,0), and P3 (-r,-r,0) respectively are

.,_fb r,+ r

r r

= r r

s 2=b+ 2b +

Let t be time, X the wavelength of the light, and T the
period. The resultant oscillaton of !light arriving at point Q
from the points Pl, P2 , and P3 is proportional to the expression

V= sin2ff - ) sin 2r ( -) + sin 2r t .

Substituting in the expressions for the distances sl, s2, and

s3 , we obtain, by the addition theorem:

V=ICsin2 or Scos2sr



where C cos (-2'+ 1 + cos ('- 2 + cos (+

S = sin (- 2 r + ) + sin (4'- 2) + sin (' + 71,

/21
, b .  (5)

Finally, if

C - M cos p, S- M sinq;

then

V= Msin .-- 2 M== C' + S .

The intensity I of the light is proportional to the kinetic

energy of the oscillation; therefore M
2 can be taken as a

measure of the intensity of the light.

Carrying out the calculations, we find

.1- M= 3+2cos(3 '- 3 ')+2cos 3 '-'+2cs3 . (6)

It is easy to see that I reaches its maximum value of 9 when

V= n, -, '-n,2 (n,,n.= O,+ 1, _2,*) .(7)

or

2=2kb 2Ab
rn-' V- = n2 -3,r (8)

Hence, the light maxima are oriented in the manner depicted
in Fig. 4. At the intersection point of the z-axis and the
movable plane, a point equidistant from the points P, there is
naturally a maximum. The surrounding maxima form a regular
hexagon, and outside the latter is a new hexagon the points of
which form equilateral triangles with the points of the first
hexagon, etc..

12



* . . The intensity of the light is zero /22
at the midpoints of the triangles formed

" *.. * by the maxima. The distribution of the
* * * * light can be graphically illustrated by

computing curves of equal light intensity.
" * Figure 5 shows the curves of equal light

** . intensity surrounding a maximum point,
the intensity of the light changing by

Fig. 4. half a size class in going from one curve
to the next, so that the ratio of light
intensities for points on successive curves

is 1.585. These curves correspond
to the values I = (9), 5.679,
3.583, 2.261, 1.426, 0.900, ....

Just as in the two-hole
method, enlarging the holes in
the three-hole method reduces the
number of light points, and when
the light is not monochromatic,
there is just a collection of
colored series of points around
the central point, no matter how
small the holes are made.

In studying the wave front,
only the position of the central
light point is of interest. By
determining its position in the /23
movable plane relative to the

Fig. 5. axis of the reference sphere,
thus involving a measurement of
two coordinates, the deviations

hl, h2 , and h3 of the points P, P2 , and P3 from the reference
sphere can be determined in relation to each other. By shifting
the screen in suitable fashion, the light front can be studied
at a sufficient number of points. The three-hole method is
particularly suitable for determining astigmatic errors, as will
be explained later.

Three-Slit Method

7. Above, it was briefly mentioned that using a screen
with three successive holes makes it possible to determine the
radius of the circle passing through the points corresponding
to the holes on the light front. We now examine this method
more closely, by first making the holes infinitesimally small
and the light monochromatic.

13



Because of the screen, the light
P D D g can propagate only from the points P I

P2 , and P 3 on the light front (Fig.
0 is the center of the circle passing /24
through the points P1, P2 , and P3. Let

sS R the radius of the circle be R, and let

the distance of the points P1 and P3
from the line P2 0 be D. In-studying

0 the distribution of the light, we can
, restrict ourselves to the plane P1P2P 30,

since the curves of equal intensity
in the vicinity of this plane are lines

Fig. 6. at right angles to this plane, as is
easy to see. We calculate the intensity
of light at the point Q, at a distance n
from the line P20, while the distance

from P to the normal to P20 passing through Q is R + ?. Then,
we easily obtain the following expansions for the distances

P1Q = Sl, P2 Q = s2, and P3
Q = s3:

D DI D D'

s, = R + ? + I ,

s,=R+ +-_D D' D D +
s-R+ .-2 - .+ .... Is- -)-- +**.

Let the holes PI and P be equally large, and let P2 be k times
as large as the first wo. The oscillatory velocity of the light at

point Q is then proportional to the expression

V sin 2 r - + k sin2r - 1 +sin2 r --.

The intensity I of the light is calculated in the same way as
in the previous method. By carrying out the calculations, we
find

I = k' + 4keos () cos +4cos ---

ksinS [k cos ,+ 2cos '

Using the symbols

2nD ITD'

.- ' (10)

14



we obtain /25

I = ks + 4 k cos i' cos 9' + 4 cbs' ~'

= k2 sin2 ' +(k cos ' + 2 cos '). (11)

I is therefore a periodic function of both ' and n'. Both
periods are 2w.

First consider ' constant. If Ik cosg'l < 2, I reaches
its maximum at the points n' = 0, ±7, ±2w, ±37, ... and its
minimum at the points at which k:cos ' + 2cosn' = 0. On the
other hand, if Ik cosc'l J 2, I has its maxima and minima
alternatingly at the points n' = ..., -2w, -w, 0, +w, +2w, ....
For every plane at right angles to the line P20, there will be
a .banded diffraction pattern, which changes as the distance
from the plane to the point P2 is varied.

Now consider the extreme values

f''0, Io=k2+4 + 4kcos ',
'=, =k 2 +4-4kcos' (12)

as C' is varied. When 5' = 0, IO0 is a maximum and Il is a minimum.
As 'I increases, I0 decreases and Il increases until they are
equally large, at c' = ±w/2. At these points, IO0 and Il are
changing most rapidly. As l'J continues to increase, .II
becomes larger than I0. When ' is sufficiently close to the
values ±w/2, I0 and Il are both maxima when k > 2.

From the above mathematical analysis, the best wayto
determine the radius R of curvature can be deduced. With a
high-magnification ocular, the diffraction pattern is observed
on both sides of the plane ' = 0. First, the ocular is e.g.
inserted so far that the interference bands, which are initially
of different intensities, become equally bright. Then, the ocular /26
is withdrawn until the bands are again equally bright. Halfway
between these positions of the ocular is the position at which
one sees the plane l' = 0. Since I0 and Il are changing fastest
at ' = ±w/2, it is clear that this measurement is much more
accurate than trying to recognize directly the position of the
C' = 0 plane by looking for the point at which one interference
line (I0 ) reaches its maximum, and the other (II ) its minimum
brightness.

Since the holes.are in reality finite, the number of inter-
ference lines will be limited, and the interference pattern will
disappear completely when the movable plane is withdrawn far
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enough from the point O, so that only the extrafocal images
induced by the separate holes can be seen. By exploiting this
fact, one can discover whether the movable plane under investi-
gation is ' = 0 or one of the planes c' = 2nu (n = ±1, ±2, ...).
If the light employed is.not monochromatic, this will also limit
the extent of the interference phenomenon in all directions.

Let us first determine the value which k must assume in
order to be able to carry out the observations as accurately
as possible. The faster the difference I0 - I varies in
relation to the mean light intensity (I0 + 11)/2 of the band,
the easier it will be to detect the plane in which IO and Il
are equally great. Hence, as a sensitivity criterion for the
method, let us consider the expression

8k

S= k (13)
I 2i

When k = 2, K achieves its maximum value of 2. The method is
then most sensitive when the center hole is twice as large as
the outer ones.

When the holes are of equal size, i.e. k = 1, then K = 8/5,/27
and the accuracy is therefore not appreciably smaller than in
the theoretically most favorable case. For certain reasons, e.g.
because it is desirable to always view the same surface sections
when the screen is shifted, it ought to be best to make all holes
the same size and shape in practice.

This method is particularly well suited for determining
zonal aberrations. When the radius of the circle passing through
the points Pl, P2 , and P3 on the wave front is determined, an
equation is obtained for the deviations of the wave front at
these points. If the screen is then shifted, and the radius of
curvature is determined once more, an equation is found for the
deviations of the points P2, P3 , and P4, etc. If arbitrary values
are assigned to the deviations of three points on the wave front,
the remaining deviations are obtained from the equations deter-
mined by measurement. In practice, it is most convenient to
make the holes in the form of narrow rectangles, and for this
reason I have termed the method the three-slit method, in order
to distinguish it from the three-hole method previously described.

Four-Hole Method

8. By using a screen containing three holes of equal size
forming an equilateral triangle and a fourth hole in the middle
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of the first three, one acquires a method with which the curva-
ture of the light front can be determined in the same way that
the curvature of a spherical surface is measured with a conven-
tional spherometer.

In calculating the diffraction pattern, we proceed in the
same way as before, and again assume the light to be monochromatic
and the holes to be infinitesimally small, so that the light can
propagate only from the points.Pl, P2, P3, and P4 on the light /28
front, of which P, P 2, and P form an equilateral triangle and

P4 is equidistant from the points Pl, P2 and P3 . Let 0 be the
center of the sphere passing through the points P, and let R be
the radius of the sphere. We will employ a skew coordinate
system, the origin of which is the point P4. The z-axis coincides
with the line P40, the xy-plane is perpendicular to the z-axis,
the xz-plane passes through the point PI, and the yz-plane passes
through the point P2 . Let the distance of the points Pl, P2,
and P3 from the z-axis be r. Let the holes Pl, P2 , and P3 be
equally large, and let the hole P4 be k times as large as the
first three.

Let us calculate the intensity of the light at a point
Q(C,n,R+ ) near the focus. For the distances PQ = sl , P2 Q = s2,
P3Q = s3 , and P4Q = s4, we obtain the following expansions:

s 1=R++r- r -

s, = R + C + r2

s=R+C+--.

The oscillatory velocity ;at the point Q is proportional
to the expression

V= sinS,6 - +s r - sin 2- s)+

+ksin2a( t .\

The intensity I of the light is calculated as in the
previous cases. Let

. , 
P AR .~ R , (14)
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Then

/29
Sk+ 3 + 2k [cos (- 2 +' ,- ) + cos('-2- + 15)

+ cos (' + V'- C')] + 2 [cos (3 V'- 3 ') + cos 3 '+ cos 3,'j. \

I is therefore a periodic function of all the variables, and
the length of the periods is 2w.

Consider the distribution of light in the plane z = R + i
and for the time being, take 5', Ito!lbe constant. I acquires
its extreme values at the points

Sf n , 3 n:'= , (n,, n = O, 1, 2, . ), .

and these extreme values are all maxima when k < 6 and C' is
sufficiently small. If k < 3, the extreme values are maxima
no matter what the value of c'. There are no other maxima.

The maxima therefore fall at the same points as in the
three-hole method, but they are not of equal intensity, but
can be divided into the following three classes

(1) '=(2 n +n,)T ('= (n+ 2n ,) 2

I = k'+9+6kcos ',

(2) =(2n, + n, + 1)- (n + 2n, +) 2
(2((16)

I k' + 9 + 6 k cos +), (16)

(3) = (2 n, + n, + 2) 3 , ,'= (n, + 2'n, + 2) 2n

13= k'+9+6kcos 2
3 -).

The distribution of the maximum points in the movable plane is
visible in Fig. 7.

The maximum point ' = 0, .n' = 0 belonging to Class (1) is
the central point of the figure. It is surrounded by a regular
hexagon of maxima belonging in alternation to Class (2) and
Class (3).

With the aid of the maxima (2) and (3), the position of
the plane c' = 0 can be determined precisely. From the above
formulas, it can be seen that 12 = 13 when ' = 0, and in the
vicinity of the plane i' =0, 13 > 12 when r' >) 0, and 13 < 12 /30
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when 5' < 0.. In practice, the plane
* = 0 is determined by inserting

S* . ° . and withdrawing a strongly magnifying
ocular and observing when the maxima

* * * * • * * (2) and (3) surrounding the central

, . * . . point are of equal intensity. This

position of the ocular corresponds
S* to the plane ' = 0, assuming that

S. . * • no error of an entire period has

/ i been made, where 1' = ±2f, ±4f, ....

In actuality, the holes are
Fig. 7. finite, and this restricts the

extent of the interference pattern
in all directions. By inserting or

withdrawing the ocular far enough, the joint interference pattern

formed by the holes can be made to disappear, leaving four separate

diffraction patterns. If this circumstance is exploited, one can

ascertain whether a plane in question is 0' = 0 or one of the

planes ' = ±2f, ±4, ....

Again, we look for the value k at which the method is as

sensitive as possible. As a sensitivity criterion, we can employ

the expression

d

K= P k'-3k+9"
(Ik+k+) (17)

o=o

If k = 3, K attains its maximum value of 2/. This /31

method is therefore most sensitive when the center hole is just

as large as all the surrounding ones put together. If the holes

are all of the same size, i.e. k = 1, then K = 8/3/7. Although

this changes the accuracy quite a bit, it is still probably best

to make all holes the same size in practice.

The four-hole method is particularly suitable for accurate

focusing of telescopes. The central hole is placed at the

center of the objective and the remaining holes near its edge.
The method can also be used to determine zonal aberrations.
However, because of the unsteadiness of the images, the four-

hole method is only usable with exceptionally good images for
large objectives.

Theory of the Methods When the Holes Are Finite

9. In deriving the formulas, the holes have so far been

assumed to be infinitesimally small. We will now determine the
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light distribution in the diffraction pattern for the two-hole
method under the assumption that the holes are finite. We
will attempt to ascertain the errors which might arise if the
holes were identified with their midpoints in determining the
shape of the wave front using the two-hole method.

We will first determine the form of the diffraction pattern
produced by two equal holes L1 and L2 in the focal plane oriented
in the same directions, when the light front is assumed to be a
sphere and the light monochromatic at wavelength X. Let the
radius of the sphere be b, and the separation of the "centers of
gravity" of the holes D. As the origin of an orthogonal coordinate
system, we choose the focus O. As the z-axis we take the central
normal of the line connecting the centers of the holes. Let the /32
y-axis be parallel to this line, positive toward the hole L2.Let the x-axis be perpendicular to the yz-plane.

The distance s between the point Q(C,n,0) in the movable
plane and the point P(x,y,z) on the light front is obtained
from the equation

s'= (x-))'+ (y - )'+ Z= b2- 2-2yq + P+2.

Very close to the origin, it is sufficiently accurate to write

b b

Since the wave front is just a very small portion of the
surface of a sphere, the area of the surface element on the
wave front can be taken to be dx dy. The resultant oscillation
at the point Q is proportional to the expression

ff sin 2rT( - dxdy,
(M 14)

where the integration is performed over both holes. The intensity
of the light at point,Q is calculated as before. We employ
the symbols

SC= fsin (s x + ly) dxdy_

The intensity of the light in the movable plane is then pro-
portional to the expression
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I = C2 + S2 .

If we set y = -D/2 + y' in integrating over the first hole and
y = +D/2 + y' in integrating over the second hole, we obtain
the same limits for both integrals. By simplifying, we find

= 2 cos C, - /33

S =2 cosbj. S,

taking the integrals

c , = ffcosb (zI,+ ty') dxdy'1. (18)

S, =ff sin j (x + Vy') dxdy'

over a single hole. We thus obtain

I= cos *(+S \ (19)

where the expression C12 + S1
2 is the light intensity of the

diffraction pattern of one hole.

From these formulas, it is evident that the diffraction
pattern produced by two congruent holes is similar to the one
generated by a single hole, on which bright and dark lines are
drawn at right angles to the line connecting the holes. In prac-
tice, only the central disc of the diffraction pattern and the
lines situated on it can be seen clearly. The distance between
dark lines is Xb/D, and the distance between the bright lines is
roughly the same. The smaller the holes in comparison with the
distance between them, the larger the number of lines on the
central disc of the diffraction pattern produced by one hole,
and the greater the regularity of the light distribution along and
close to the :central line. The above statements also apply to a
great extent even when the holes differ somewhat. A precise
mathematical analysis of the matter would take too much room,
however.
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The above discussion implies that the two-hole method has /34
an important advantage over the one-hole method (Hartmann's),
namely that irregularities in the shape of the holes and air
bubbles in the objective have very little effect on the dis-
tribution of light on the central line, the only one concerned
in the measurements, while in Hartmann's method, even a very
slight irregularity in the shape of the holes makes the diffrac-
tion pattern irregular and observation uncertain.

When the holes are rectangles, the integration is very
easy. Let the lengths of the sides of the vrectangle in the
x and y directions be y and 6 respectively. Then

2sn nb sin -I

snf fsin (O ii)dxdy'=0 (20)
-ie -1t

C2 S = sin (sin 1
ZAb Ab

We will not examine this formula in detail (cf. [91). We
observe only that the points at which the light intensity is
zero form congruent rectangles. The light intensity on the
y-axis is zero first at a distance Ab/6 from the origin.
Earlier, it was mentioned that in the diffraction pattern pro-
duced by two holes, the separation of similar lines is Ab/D.
The number of lines on the central disk of the diffraction
pattern produced by a rectangular hole therefore increases in /35
the same ratio as D/6.

10. So far, it has been assumed that the wave front is
precisely spherical. In that case, the maximum of the light in'
the central line is always on the x-axis, as long as the holes
are rectangular, and the distribution of the light on both,
sides of the x-axis is symmetric with respect to the latter.
Of course, this symmetry is retained even when the wave front
is not a sphere, as long as the deviations are symmetric with
respect to the xz-plane. In other cases, it is likely that the
maximum line of the central interference band is displaced by
a certain amount from the x-axis, and it would no longer be
immediately evident that the calculations could be carried out
as in the case when the holes were infinitesimally small. We
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now assume that the deviations of the wave front are of a
relatively general form, and we determine their effects on the
maximum line of the central band. For the sake of completeness,
we also allow for differences in light intensity over the wave
front. Such differences do exist, at least for refracting
telescopes, since the thickness of the objective increases
toward the center. Nevertheless, near a hole, we assume the
light intensity to be constant.

We employ the same type of coordinate system as before.
The z-axis is therefore the central normal of the segment con-
necting the midpoints of the rectangle. As the origin, we choose
an arbitrary point on the z-axis, which can be viewed as an
approximate focus. The deviations of the wave front are cal-
culated from the sphere with center at the origin and passing
through the midpoints of the holes. In general, the sides of
the rectangles parallel to the y-axis are very small, so that in
practice, it is sufficient to express the deviations of the wave /36
front at the holes L1 and L2 by the formulas

h = ay' + 'Pis (x,y'),
s = as y' + aP, (x, y),

where the two functions *1 and 2 of both variables are assumed
to be even functions of the variable y'. Moreover, we assume
that hi and h2 are small compared to the light wave near the
rectangles.

The distance between the point (C,n) near the origin in
the xy-plane and the point (x,y') on the parts Ll or L2 of the
wave front can be approximately expressed by the formulas

s,= b+ - x + h,

Assume that the light intensities on the parts L and L2 of
the wave front are in the ratio pl:p 2 . Then, the light intensity
in the movable plane is proportional to the expression

I = C2 + S
2

where
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C =fqicosj[ +-2 + (a - xy' :- z ,] dzdy'

+ c,,os,, - (a + - x- + + tP.]dzd',

i,,,

Sf e, ~ -+ (a, - )y'- x + "] dXdy'

Since we intend only to discover the position of the
maximum line of the central band, and since we need to know the
latter only in the immediate vicinity of the y-axis, both E and /37
n as well as, by what has been said previously, the arguments
of the trigonometric functions in the integrands are very small,
so that we can omit powers higher than the square in the series
expansion of the trigonometric functions. We therefore obtain:

C-ffe +, [+ +- y'( + 2:]dx dy'S-f(eLq,)y+)+ (, a '+ l] dddV "
14

.2 " Db + 9y,_

When we do the integrations, the x-integration extending
between the limits -y/2 and +y/2, and the y-integration between
the limits -6/2 and +6/2, we find

C (e, + ,) rd + () +(j)f (e, a + ea,)r, +

+ 2D(-e 1 ff ., dxdy' + e ff dz dy')]
14 14

- ()' (e, + .,) y, D + ,d ().
s = [2 (qi ff ,, ddy' + q, ff 2 dx dy) + (e. - e,) Dyd]

where e() contains terms independent of Ti and small with
respect to the main term. Furthermore,
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J =- + = (e, + +,)" (to + ,1 (

+ ()rJ(e +,,)(QaO +Qa,)yd' +8eesD(- ff ddy'+

+ ff V', dxdy')]- ()' ()' [4 e + 3( + )'] ( + -

where el(E) again contains the small terms independent of n. /38

In order to learn the value of n at which I attains its
maximum, we write dI/dn = O. If we expand and solve this
equation, we obtain

(e +PS)(as.+eNat)'+4e, Qa (- ff ,dx dy'+ ff ddy

S4,es, D'+ ,(ea+ e4)' 6'

This expression can be written in the form

S6()[ - ( )']+2 ))2
S1+ .

by using the symbols

= ff pdxdy'= 'ffh,dxdy',

,= fj 2ddy'= ff h, dxdy'. (21)

14 e

hence, h1 and h2 are the mean values of the deviations of the
wave front in the regions L1 and L2 respectively.

Since, in reality, p2 and pl are approximately of the
same size, it is sufficiently precise to write

b= + b ' (22)

where

6(~)+2 b 6( +2 b D 1+(j (23)
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To start with, consider the first term n'/b of the correc-
tion expression. In usable telescopes, al + a2 would not amount /39
to very many seconds even if the most:.unfavorable points on the
wave front were selected and D were chosen accordingly. Since,
for the most part, the wave front has a relatively simple shape
(very often, the residual spherical aberration is the most
important constituent of the deviations), ai + a2 can reach the
greatest possible value only when D is rela ively large. In that
case, however, D/6 is also large, because one is trying to make
6 as small as possible, and n'/b is therefore small because of
the large denominator 6(D/6) 2 + 2. If, for example, D/6 = 4,
n'/b = (a, + a)/98. Making D/6 smaller does make the denominator
in the expression for n'/b smaller as well, but in general it
also makes al + a2 smaller. One of the smallest values coming
into)consideration is D/6 = 2, so that rn'/b = (al+)/2 6 . If
e.g. a, + a2 = i", then n'/b = 0.04".

This implies that the influence of the correction n' in
ordinary cases is very insignificant. It can become appreciable
only if the deviations of the wave front are very large. In
such a case, however, there is generally no reason to measure
the errors with such great absolute precision as when studying
good objectives. Nevertheless, there is one case in which it
may be desirable to determine large deviations with great
absolute precision, namely when a parabolic mirror with a short
focal length is being studied with the aid of an artificial star
placed at the center of curvature. Even in this case, however,
the correction n' is not taken into account. For one thing, the
deviations increase relatively slowly from the center toward the
edge, since a regular spherical aberration is involved. Second,
it is easy to provide the artifical star with such a luminous
intensity that the slits can be made very narrow, without impair-
ing the accuracy of the observations, and this makes D/6 /40
sufficiently large. In general, the observations can be arranged
so that in practice, n' = 0.

Now consider the term n"/b. In objectives, pi and p2 are
somewhat different, s.ince the middle of an objective is thicker
than its edges. For such a large objective as that of the Lick
Observatory, this difference is only 15 mm, and the corresponding
absorption of the glass is at most 6%, even for light with
chemical effects (cf. the absorption table for optical glasses
in [10]). Recalling that the distance between the sets in
practice is only a fraction of half the aperture of the objective,
it is easy to see that the influence of changes in absorption
is very small. In reflecting telescopes, pl and p2 can be
different only when there are spots on the reflector due to
faulty silver-coating. For example, assume that p2:pl = 105:95,
i.e. that (p2 -Pl)/ P2+pJ) = 1/20, and D/6 = 2.. Then
n"/b = (L2 - aj,/520. Without further arguments, it can be said
that n" is vanishingly small in practice.
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Likewise, it is usually safe to write n"' = 0. Approximately,

7 (24)

Comparing this formula with (3), we can make the following
statement: by the two-hole method, the mean value of the devia-
tions of the parts of the wave front corresponding to the holes
can be determined.

As previously stated, this mean value can be replaced by
the deviation in the middle of the hole. At any rate, the cal- /41
culations can be carried out in first approximation under this
assumption, and the accuracy subsequently improved if it should
prove necessary. Enhancing the accuracy comes into consideration
in the determination of zonal aberrations when the slits are made
relatively long in order tbachieve sufficient light intensity,
and when there is a depression or elevation in the center of the
wave front in a small area.

In the above discussion, it was assumed that the holes are
congruent rectangles. If the holes are of different size and
irregular at the edges, so that they'deviate to some extent from
the rectangular shape, this has the same effect, in first approxi-
mation, as a different pl:p2 ratio, and therefore does not induce
any appreciable change in the value of n. Moreover, a hypothetical
influence due to holes of different sizes can be eliminated by
rotating the screen by 1800.

It should be kept in mind that the above theory was not
formulated for completeness, since the higher-order terms were
thrown out in deriving the formulas, and since only the position
of the maximum line is calculated, without studying the distribu-
tion of light even in its vicinity. For instance, it is conceivable
that when the light is not distributed symmetrically on both sides
of the maximum line, the alignment also is not precisely on the
maximum line, but systematically somewhat to the side of it.
Of course, this error cannot be calculated theoretically, and
therefore we have contented ourselves with the above simple
theory. After all, its purpose was not to derive formulas by
which the errors could be corrected, but to estimate the order
of magnitude of the errors and then to show that the errors are
vanishingly small in practice. This is particularly true for /42
the corrections n' and n". As for the correction n"', the form
in which it was previously expressed in words appears so natural
that it could have actually been guessed even without calculations.

A study similar to the one just conducted for the two-hole
method could of course be performed for the other methods as well,
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and the results would doubtlessly be similar. However, we do
not consider it worthwhile deriving thecorresponding formulas,
especially since the calculations belcome more complicated when
more holes are included. We observe only that the result
obtained for the two-hole method -- i.e. that the mean value for
the deviations of the points of the wave front for each hole
are determined by the observations -- is easily seen to be valid
for all methods.
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III. Applications /43

11. In order to illustrate the practical application of
the method which I have described for studying objectives, I
will now give a report on the examination of three telescopes
of the Helsinki Observatory and a parabolic mirror which I ground.
At the same time, I will make some observations of a general
nature on the organization of the observations in different cases,
on error sources, on precision, etc.

The particular instruments of the Observatory are the
portable transit, the old Utzschneider-Fraunhofer refractor,
and the large transit. In investigating the optics of these
instruments, I employed the two-slit and three-hole methods,
since these are generally the best to use when the instrument is
stable and is equipped with an ocular micrometer. It would also
have been interesting to examine the largest instrument in the
Observatory, the astrograph, but there was no suitable opportunity
to do so, because it was tied up by photographic projects.

As an illustration of an application of the three-slit
method, I will describe only observations made at home while I
was grinding a parabolic mirror 17.5 cm in diameter. I have
checked the applicability of the four-hole method only for small
objectives, but did attain quite satisfactory results. In this /44
treatise, I will content myself with just this remark.

At the conclusion of this Chapter, I will make some remarks
on Michelson's method and I will mention some modifications in
my methods.

Application of the Two-Slit Method to the Small Transit

12. The portable transit (Repsoldt, 1886) has a bent
telescope, so that the images are affected both by the errors
of the objective and those of the prism. The objective aper-
ture is 7 cm and the focal length 75 cm. The instrument is
equipped with a very good ocular micrometer which can be turned
through 900. It can therefore be viewed as a typical example
of a small instrument usable for precise measurements.

In studying the objective, it is generally better to use
an artificial star instead of a real one as the light source.
Among the advantages of the former are: an artificial star can
easily be made bright enough so that observations can be made
without difficulty even when the slits in the screen are very
small. Of course, observations can also be made when the sky
is cloudy, and they will be more precise than when real stars
are utilized, assuming that the artificial star is not too far
away. The observations and calculations are simpler when an
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artificial star is used, because the star does not move. The
light from an artificial star can also'be made monochromatic,
and this will certainly yield more accurate measurements than
when nonmonochromatic light is employed. Moreover, the chromatic
aberration can be determined precisely by varying the wavelength.

I attached the artificial star to a stone pillar which was
about 50 m to the east of the transit and carried a sighting
mark. In place of the mark, I made a straight slit a few tenths
of a millimeter wide, which could be turned into the vertical /45
or horizontal directions as desired. Behind the slit, I placed
a 50-candlepower frosted electric lamp, when I employed a linear
light source, and a bright 50-candlepower, so-called 1/2-watt
lamp when I required a point light source. I placed the filament
of the latter lamp at right angles to the slit. In both methods,
the interference lines were clearly visible, although the slits
in the screens were only 2 mm wide and 6 mm long.

The screens I produced as follows (Fig. 8).

A round cardboard disk
A was fastened in front of

. the objective. In the disk
was a hole BB, the length

------- of which was equal to the
diameter of the objective.
A sheet CC, made of heavy

-------------- drawing paper, and contain-
C 8C ing the slits E1 and E2

-- could be moved back and
forth beneath the paper
strips D1 D1 and D2D 2.
Thus, CC formed a movable
screen. The position of
the slits relative to the
center of the objective was

Fig. 8. read off the scale FF with
the aid of the index mark
G. The scale had 20 divi- /46
sions numbered from -10

to +10. The spacing between two successive lines was 3.3 mm.

Since, in the center of the hypotenuse surface of the prism,
there was a depression for field illumination, the observations
had to be organized so that the slit never fell in the center of
the objective. In Fig. 9, the points lying on the diameter of
the objective for which the deviations of the wave front were
determined are marked. The extreme points (-10, +10) were 33 mm
from the center of the objective or 2 mm from its edge.
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The distance between two

S-6 4 .2 .*4 .6 * successive points. was 1P = 3.3 mm.
IIIII1 I jIiji-llI - By using a screen in which the

separation of the* slits was D4 =
= 4P = 13.2 mm, the deviations of
the wave front were determined at
the points -6, -2, +2, and +6,
the deviations at the points -10
and +10 being assumed to be zero.

Based on these observed deviations, the deviations of the inter-
vening points -8, -4, +4, and +8 were found using a screen with
D2 = 2P = 6.6 mm. Finally, the deviations at -9, -7, -5, -3,
+3, +5, +7, and +9 were found with a screen with D1 = 1P = 3.3 mm.
In the latter screen, the slits were about 1.7 mm wide. With
the aid of screen D4, therefore, the first-order points were
determined, followed by the second-order and third-order points
using the other screens and the results with the first one.

Assume that the horizontal diameter was the one to be
investigated. The movable hairline of the micrometer was set
vertically, and the linear slit of the light source was made
precisely vertical, as well as the slits in the screen. The /47
positive reading of the scale FF was set on the side of the
optical axis toward which the reading of the micrometer increased.
The observations were carried out in the following order. The
screen D4 was first placed so that the slits arrived at the
points -10 and -6. The index mark G was then opposite the -8
line on the scale. For the sake of brevity, we will say that
the position of the screen was -8. The central interference band
was aligned twice with the movable hairline. Next, the obser-
vations were made in the positions -4, 0, +4, and +8, and then
the observations were repeated in the reverse sequence. The
observations were continued with the other screens in the same
fashion, i.e. in positions -9, -7, -5, -3, +3, +5, +7, and +9
and back again with screen D2 , and in positions -9.5, -8.5, ... ,
-2.5, + 2.5, ..., +9.5 and back again with screen Dl. Finally,
a second series of observations was made with screen D4. The
magnification of the telescope was 120 for all observations.
In observing the sighting mark, the value of one screw revolution
was 55.60".

13. In Tables I-IV, I present the observations I made on
the evening of March 3, 1921 to determine the errors along the
horizontal diameter of the objective, the artificial ,star
being situated at the center of the field of vision.
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TABLE I.

D, =4P = 13.2 mm

S a' u" u"' u ""

-8 17R.156 17R.161 17R. 155 17 R.159 17158
-4 230 230 231 221 228
0 - 200 196 200 199 199

+4 184 188 188 180 185+8 220 2241 222 223 222

TABLE II. /48___

D,= 2P= 6.6 mmI IIuI n' "" :i u'" UI""

--9 17.093 17a.100 17R.102 17R.094 17 .097
-7 184 170 178 170 176-5 219 211 229 *215 218
-3 205 195 201 203i 201
* +3 182 170 168 1791 175
+ 5 170 178 164 180 , 173
+7 226 221 204 210 215
+9 236 232 230 228 232

TABLE III.
D, = 1P  3.3 mm

g u' up,  ... "' re- u

-9.5 17. 17R.09 17R.065 17R.060 17R.0(66
-8.5 114 . 144 112 121 123
-7.5 1B8 15 154 144 155
-6.5 180 181 169 196 182
-5.5 200 2Y2 197 205 201
-4.5 235 235 24 228 235
-3.5 230 236 212 226
-2.5 194 178 191 165 182
+2.5 170 166 158 158 163
+3.5 185 200 192 189 192
+4.5 164 174 164 170 168
+5.5 166 160 162 174 166
+6.5 200 215 195 195 201
+7.5 224 209 219 223 219
+8.5 230 225 230 229 228
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TABLE IV. /49

D,= 4P= 13.2 mm

U U'"

-8. 17 R1  17R.1 1  17 .140 1 17".14 7  17 .147
-4 216 217 216 222 218

0 199 199 199 199 199
+4 -176 180 185 185 182
+8 225 227 229 225

The position y of the screen is indicated in the first
column. u' and u" are the alignments when the screen is shifted
in the positive direction, and u"' and u"" are the correspohdihg
alignments when the screen is shifted in the negative direction.
The last column contains the mean value u of the different readings.

On two evenings, March 3 and 9, 1921, I made a total of 16
series of observations of the above type with screen D4, some
to investigate the horizontal diameter and some to investigate
the vertical one. Sometimes the artificial star was at the
center of the field of vision, and sometimes to one side. From
all these observations, I calculated the mean error e of an
alignment in a different way. For simplicity's sake, I computed
it with the aid of the average error. The mean error of the
differences u' - " and u"' - u"" is e2. From this material,
I obtained E = 0 .00222 = ±0.123". From the differences
(u' + u")/2 - (u"' + u"")/2, one finds E = ±0R.00309 = ±0.172",
i.e. a significantly larger value which can be explained by
possible changes in the instrument, in exact adjustment of the
screen, etc. It is interesting that from the differences
u' - u"' one obtains c = ±0R.00325 = ±0.181" and from the
differences u" = u"" a significantly smaller value, namely e = /50
= ±OR.00 2 5 9 = ±0.144". One possible source of this difference
might be a small change produced in the instrument when the
screen is shifted, a difference which is gradually neutralized
and therefore acts principally on the early alignments. For
simplicity, we give all alignments the same weight and therefore
consider the mean value (u' + u" + u"' + u'"' )/2 as the final
value. By the second mode of calculation, its mean error is
found to be eu = e/2 = ±0R.00154 = ±0.086" or in linear units
±0.31 Pm; the screw rotation is 0.2 mm.

In eight series of observations conducted with screen D2,I obtained as the mean error of an alignment e = ±0R. 00452 =
= ±0.251" from the differences u' - u" and u"' - u""; E =
= ±0.00528 = ±0.294" from the differences (u' + u")/2 - (u"' + u"")),2.

33



With the aid of the latter value of ,.the mean error of the
mean value is found to be Cu = ±0R. 00 2 6 4 = ±0.147". From the
two series carried out with screen D1 , I obtained through the
two modes of calculation described above c = ±0R.00 8 2  ±0.46"
or e = ±0R.010 7 = ±0.59" as the mean error of an alignment,
and from the'latter value u = ±OR. 0 05 4 

= ±0.30".

These figures show that the actual alignment error is
inversely proportional to the spacing D between the slits, as
would have been anticipated. Namely, 0.12 3 ":0.2 5 1":0.46" = 1/4:
:1/2:1/1, approximately. In the mean errors eu as well, the
same law holds for the observations made with screens D2 and Dl,
but the eu corresponding to screen D4 is already relatively
somewhat larger. This too is expected, since the motions of
the instruments and other errors independent of the distance
between the slits have relatively greater effects on the obser-
vations carried out with screen D4 than on the other observations.

In his method of extrafocal images, Hartmann [11] assumed /51
that the mean error in measuring the distance between two images
was about E = 0.008 mm if the images were reasonably good, and
perhaps e = 0.003 mm if they were very good. The first value
agrees with the results of Lehmann [12]. In order to obtain
the alignment accuracy of an image, the figures must be divided
by 12. If these figures are compared with the mean errors I have
given, it can be seen that the precision obtained with the two-
slit method is many times greater than that achieved by the
Hartmann method. It should also be observed that Hartmann, in
his studies of objectives with an artificial star, used mono-
chromatic light, while I employed just the nonmonochromatic light
delivered by an ordinary electrical bulb. For this reason, when
the screen was shifted to one side, the distribution of the
colors was not quite symmetric with respect to the central inter-
ference band because of the secondary spectrum. If monochromatic
light had been used, the accuracy would certainly have been even
greater.

14. The deviations of the wave front were calculated with
the aid of formula (3). If, in this formula, we set cosw = 1,
we then obtain

h2 - h i = Dn/b

Now n/b = p(u - u), where p is the value in radians corresponding
to one screw revolution and u is a micrometer reading to be
determined later. Hence, from the measurements taken with the
screen D4, we. obtain the equations
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h-e - h-o - D4 q (u_ - u),

h-s-h- = D, (u-.4-u),
h, -h- =-D4 (u - u), (25)
h, - h, .- D (u, - u),
hie - h. = D 4 e (u, - u).

We set h_1 0 = h10 = 0;. we then obtain from the above equations /52

- (+ U+ u_ + Uo+ +us). (26)

The calculation for the first series of observations is
reproduced in Table V. h' is the deviation obtained from the
first series, and h" that from the second series, while h is
the mean value of the two.

TABLE V.

D,=4P= 13.2 mm; D,p=3.56.10- 3I !S y u 10,'(u- ) De(u-u) h h" h

I nm nm nm nm
-10 0 0 0
-6 17158 -40.4 .- 144 -14 --1 -0
-6 22 2 1 -144 -169 -156228 +2.6 +105-+2 199 .+0.6 +2 -39 -85 -62

185 -13.4 -48 -7 -69 -53
+ 2226 8 -85 -113 -99

+10 222 +23.6 +8
-1 0 0

i= 17R.1984

h' and h" differ sharply. The following calculation shows
that the deviations are not due to observation errors. We dal-
culate e.g. the mean error ch- 2 of the deviation h_ 2 obtained

from a series of observations. For this purpose, we express h_ 2explicitly in terms of the observed quantities u. Accordingly, /53.:
we employ the previously calculated value u = ±0R.0 0 1 5 4 as the
mean error of u. We find

h ,.= D, (3 u-8 + 3 u.4 - 2u- 24 - 2 u)j

and hence

SD e 35+ 6.0 n
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Furthermore, eh+ 2 = eh-2 and ch± 6 = /2~JD4Peu/5 = ±5.2 nm.

From the mean errors, it can be seen that the differences h' - h"
are real. The explanation is that the first series of observa-
tions was taken as soon as the pavilion was opened, so that the
temperature of the instrument was somewhat higher than that of
the open air. The position of the movable plane changed as the
temperature varied.

From observations which I made to investigate the vertical
diameter of the objective with the screen D4, I obtained

TABLE VI.

y h' h" h

nm nm nm
-10 0 0 0
-6 -233 -- 25 -2Z34

-2 -270 -278 -274

+2 -300 -314 -307

+6 -273 - 2778 -276

+10 0 0 i 0

The differences h' - h" have the same sign here as in the obser-
vations on the horizontal diameter, but the magnitude of the
differences is of the order of magnitude of the observation /54
errors. It is also evident from the results that the curvature
of the wave front in the vertical direction is quite different
from that in the horizontal direction. We will return to this
point later.

15. Exploiting the values obtained with the screen D4, we
now wish to determine the deviations of the wave front for the
intervening points with the screens D2 and D1 . Before we
describe these calculations, we investigate the form of the wave
front using only the observations made with screens D2 and D1 .
Since no uniform series of observations could be carried out
with these screens because of the illuminating prism, no indi-
vidual deviations h could be determined from these observations,

but the mean values h0 = (hy + hy)/2 could be.

From the measurements undertaken with screen D2 , we obtain
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h-a-h-,o=De(u,-- ),
h_, - h-, = D, (u, - u),

(27)

and from the latter

hf - ho = . D, (u ,.-- u,).

ho -h = D ,(u- 5 -us), (28)

h -- h = . D, 9 (u-o - 13).

If we write h00 0, we can obtain h80, h06 , h, and h2 from these

equations. As the mean error of h2, we obtain eh0 = V/D2PEu

= ±6.7 nm, assuming that Eu = +R 00264. 2

From the observations made with screen DI, we obtain in
the same way

h: - h o - D Q (u-. - u,), /55
0.h: - h 9 - 2D, e 0-- u.0,

--------- (29)
h - hs - t D, e (u _ , - u.|)

and hO = 2DP1Su = ±9.6 nm, assuming eu = +0 .0054. For purposes

of comparison, it should be noted that chO = +D4pEu = ±5.5 nm is
obtained from the observations made with screen D4, assuming that
u  _+0.00154.

If we carry out the calculations for the observations with
these formulas, we obtain the results collected in Table VII.
They are recorded in the table in the same order as that in
which the observations were made. The observations made with
screen D4 are also included.
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TABLE VII.

h
0

Y,
Horizontal Diameter Vertical Diameter

(D) (D) (D,) (D,) (D) (D2) D) (D.)

nm nm nm nm nm nm nm nm nm
101 0 . 0 0 0 0 0 0 0
9 -8 -- 106
8 -120 -127 -170 -178
7 -156 -225

611 -114 -155. -164 -141 -2 3 -262 -262 -256
5 i -148 -304
4 1; -115 -- 119 -310 -321
3 -104 -328
2 1 -38 -92 _9 -- 77 -285 -298 -314 .- 296

Hence, there appears to be a small systematic difference
between the results obtained with the different screens in
the measurements of the two diameters. It is not hard to see /56
that the errors due to the finiteness of the slits are vanish-
ingly small. The cause of the systematic differences is
probably an effect of the secondary spectrum. Namely, the
central interference band is not symmetric with respect to the
colors, except when the slits are symmetric with respect to the
center of the objective. The asymmetry increases linearly as
the screen is moved toward the edge. Since changing the screen
modifies the thickness and separation of the interference bands,
it is probable that systematic alignment errors, which grow
roughly linearly with y, are produced when different screens are
employed. Upon reflection, we can see that the effects of such
systematic errors would be the same as those produced by shifting
the movable plane. Hence, they will have no great influence on
the form of the zonal aberrations.

We will now show how the observations made with screens D2and D1 are used to determine new points between the points
-10, -6, ... found with screen D4 . From the observations made
with screen D 2 , we easily obtain

h = (h-o + h-.) + ' D2  (u- , u- ,),
h-, =(h-, + h-,)+ . D, (u--u u,3 ), (30)
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The mean error in the deviations h_8 , h 74, .... resulting from
the observations with the screen D2 is (Y7/2)D2Pu = ±3.3 nm,
if Eu = ±0 .00264.

With screen Dl, we obtain in the same way

h-, 2 (h-,o + h-)+ D, e (u_,1 - u-),
.h,= (h_, + h- @) + I D, Q (u-, - u- ),. (31)

The mean error for the deviations h-'., h_, ... resulting from /57
the obs rvations with screen DI is (7/2) 1ipu = ±3.4 nm, if
Eu = ±0 .0054.

As we have just seen, there is a systematic difference
between the observations made with different screens. We now
investigate the magnitude of the errors which would result if
we employed the formulas derived above without reducing the
observations made with screens D2 and D1 to the same system as
the observations made with screen D4. When the horizontal
diameter is studied, the difference between the values h0 found

with screens D4 and D2 is equal to -34 nm. For simplicity, we
assume that this difference corresponds to the center of the
objective. This difference is produced when the entire diameter,
i.e. 20P, is measured independently with both screens. If, by
means of the screen D2 , new points are determined half way
between the points found with the screen D4, only a fifth of the
diameter, i.e. 4P , is taken into account. The systematic cor-
rection is then, as is easily seen, -34/25 nm = -1.4 nm, and
this can be neglected. In observations on the vertical diameter,
the systematic difference is much smaller. Finally, when deter-
mining new points using the screen D1 , only 1/10 of the entire
diameter is taken into account, so that the systematic correction
to be applied to the new points would be only 1/100 of the
systematic difference which would be produced near the center of
the objective if the entire diameter was investigated independently
with screens D 4 and D1 . By neglecting the small systematic cor-
rections, we obtain the deviations in Table VIII. from formulas
(30) and (31).

We have already emphasized the great differences between
the deviations on the horizontal diameter and those on the
vertical diameter. Therefore, the objective-prism system is
highly astigmatic. The above observations are not, however, well
suited for a precise determination of the magnitude of the
astigmatism, since the time during which the observations along
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TABLE VIII. ,/58

Horizontal Diameter Vertical Diameter

h-, h h h-, hg h.

-nm nm I nm nm nm nm
10 ' 0 0 I 0 0 0- 0

•9 -- 99 .-40 -70 -83 -- 118 -100
8 '-148 -i -106 -153 -181 -167'
7 -- 163 -89 -126 -199 -234 -216

6 - -156 -99 -128 -234 -276 -255

5 -141 -85 -113 -269 -317 -293
4 --94 -74 -8 -288 -319 -304

3 -58 -76 -67 -290 -325 -308

2 -62 -53 -58 -274 .-307 -290

the horizontal and vertical diameters were made was about an
hour, so that a change in temperature could have had an appreciable
effect on the curvature of the wave front. Therefore, I deter-
mined the astigmatism later by means of special observations.
Another feature attracting attention is the asymmetry in the
deviations of the wave front relative to the center of the objec-
tive, an aberration known by the name of coma. This aberration
will also be treated in more detail later.

16. We now consider the actual zonal aberrations. The
deviations of the wave front calculated so far depend on the
position of the movable plane. They can be made invariant under /59
displacements of the movable plane by determining the reference
sphere in such a fashion that the corresponding deviations will
also be zero at a third point. If possible, the center of the
Objective is chosen as this point. Since, with the present objec-
tive, the center is out of the question, the reference sphere is
determined so that h0 = (h_2 + h2 )/2 = 0.

Let the distance from the movable plane to the second
principal plane of the objective during the measurements be b.
If the center of the reference sphere lies in the movable plane,
let the deviation from the reference sphere of the point y on
the meridian section of the wave front be h. We now shift the
center of the reference sphere outward from the objective by a
distance Ab.' If we assume that the point of the reference
sphere on the optical axis remains unchanged, it is easy to
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deduce that the deviation h increases roughly by -y2Ab/2b 2

because of the displacement of the center of the reference
sphere. The deviation of the 2 point y on the outermost zone of
the objective- increases by -y 0 b/2b2 .. Since the specified

deviation will continue to be equal to zero, we add y2Ab/2b 2

to all the deviations, and thus obtain the following formula
for the change in the deviation at point y.

Ah= (y -). (32)

From the observations along the horizontal diameter, we
obtained hO = -58 nm. To make this deviation zero and to keep
02hl 0 equal to zero, the term

/60
+ 58 ' = + 0.604 (100- y') -

is to be subtracted from the deviations. Likewise,

290 - .,= + 3.020 (100- y').

is to be subtracted from the deviations for the vertical diameter.
These reductions are applied to the deviations hO = (hy + h )/2.

The resulting sums, which we designate zy, are the actual zonal
aberrations.

Table IX shows the zonal aberrations calculated from the
values for h0 in the preceding table in columns (D4 , D2, D1 ).

Of these, only the measurements made with screen D4 were involved
in the determination of z6.

The observations made with screens D2 and Dl can also be
employed independently for determining zonal aberrations. For
this purpose, we need only to apply the reductions to the values /61
in columns (D2 ) and (D ) in Table VII. The resulting zonal
aberrations are found in columns (D2 ) and (Dl) in Table IX.

The zonal aberration z6 was determined independently with
all three screens. We calculate its mean error in each of the
three cases. For this task, we express z6 explicitly in terms
of the observed quantity u. For example, for D4 , we find
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TABLE IX.

zy

Horizontal Diameter Vertical Diameter

y (D4D, D,.) ,) (D, D,, (D, ). (D)

nm nm jnm nm nm nm
10 0 0 0 0 0
9 -59 -61 -43 i -44
8 -84 -86 -- 91 - -5 -60
7 -95 -105 -62 - -58

6 -89 -94 -100 -62 -.63 -53
5 -68 -7 -- 67 i -59

4 -33 -34 -35 -50 -49 -46

3 -12 -13 -33 " -30

2 0 0 0 0 0 0

z =!D 4e(u-s-2u- 4 +2u,-us).

The mean error of z6 is consequently

S6,T~C6 D4 e.= +2.9 nm.

Likewise, in case D2 , we obtain

*,, Da.u = 3.5 - nm

and in the case DI

= ,--,-Dl, 1e = +5.1 nm

In each. of the cases, the values of Eu mentioned on pp. 33-34
were used.

If we compare the values obtained for the zonal aberrations
with different screens, we notice that the deviations can be
explained by random observation errors. We take the values in
column (D4D2D1 ) as the 'final values.
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There is an appreciable difference between the zonal
aberrations obtained from measurements along the horizontal
and vertical diameters. It seems very likely that this dif-
ference, like the marked astigmatism, is due to the prism and
not to the objective. In order to clarify this situation, on
March 9, 1921 I determined the deviations along the horizontal /62
and vertical diameters using screens D4 and D2 , after first
screwing out the objective by 900. Then I made new observa-
tions, after having screwed the objective back in. Table X
contains the zonal aberrations obtained from these measurements.

TABLE X.

-u
Objective W. Objective-0.

y Horiz. Verti. . Iloriz. IVertic

nm nm I nm .nm
10 • 0 0 0 0
8 -80 -67 -90 -55
6 -75 -67 -85 -57
4 -26 -54 -27 -48
2 0 0 0 0

From the table, it is evident that the difference between
the zonal aberrations obtained from observations along the
horizontal and vertical diameters are primarily due to the prism.
Nevertheless, there appears to be a certain difference attributable
to the objective.

We can express the magnitude of the astigmatism by the
formula

a = h 0 (horiz.) - h2 (vertic.).2 2

I obtained the following values for this expression.

TABLE XI. /63

Objective 90* Objective *

.Horiz. Vertic.1 Horiz. Vertic.

nm nm nm nm
h . +114 -55 -106 -290
a . +169 181
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Within the limits of observational errors, therefore, the
astigmatism did not change when the objlective was screwed out.
Hence, the primary cause of the astigmatism must be sought in
the prism.

On April 7, I again determined the astigmatism, using
screen D4. From two measurements on the vertical and horizontal
diameters, I obtained a = +194 nm. We calculate the displace-
ment of the movable plane corresponding to this value. We
substitute yo = 10P, y = 2P, b = 230P (= 761 mm) in formula (32).
We find Ab = 1103 Ah = +0.207 mm. According to the observa-
tions on the horizontal diameter, the movable plane therefore
lies.0.:207 mmcloser to the objective than indicated by obser-
vations:.along the vertical diameter.

17. We now consider the asymmetry of the wave front. At
a distance y from the center, its magnitude is determined by
the expression cy = (h - h )/2, which we call the coma. From
the following measurements along the horizontal diameter taken
on March 9, it can be seen that the coma depends on the position
of the star in the field of vision. The position of the star
is indicated by the micrometer readings u given at the top of
the table.

TABLE XII. /64

u -SR.1 u-16.9 u 30R.6

h., C. h, cy hy c
nm nm . n nm nm nm nm

-10 0 0 0
-8 .. 206 -170 ' -80
-6 -- 264 -185 " '--107
-4 -199 --125 -75
-2 -129 -111 -77
+2 ,.- -+4 102 -110 -16-
+4 -114 +42 -114 +6 -135 -30
+6 -84 +90 -128 +28 - -- 184 -38
+8 -50 +78 -90 440 -141 -30

+10 0 . 0 0 0 , 0

We wish to express the magnitude of the asymmetry of the
wave front by a-single number,.so that, among the numbers cy,
we choose the central one, i.e. c6 . The following table contains

44



the values c6 which I found from my observations with screen D4on March 16 for the horizontal diameter and on March 21 for
the vertical one.

TABLE XIII.

Horizontal Direction- Vertical Directio

Micr. " ie
Leading a u 2.8 11.51 17.4 24.3 313 34.4 2.7 8.1 16.8 25.5, 32.6
Obs.c, . .+100 460 +26. -61-36 -53!+2 -6 -26 -53 -65
Calc. c, .!+100 +58 +30 -4 -381-53 +5 -8 -29 -49 -66

Obs.-Calc.. O +2 -- 2 +21 o-3 +2 +3 -4 +1

The following linear formulas represent the observed c6very well. ec6 is the mean error of an observation calculated

calculated from the remaining errors.

Horizontal direction c6 = 114 - 4.85 u, Ec6 = ±2.6 nm. /65

Vertical direction c6 = 11 - 2.36 u, g6 = ±3.6 nm.

On the other hand, we obtain Ec6 = (35/10)D4pEu = 0.00195c u .

If, in this equation, we substitute the mean value of the mean
errors given above, i.e. ec6 = ±3.1 nm, we obtain u = ±OR.00 1 5 9 ,
i.e. roughly the same value as found on p.,. 33 . I should also
remark that in the coma observations, I made only two alignments
instead of four at each position of the screen.

From the above formulas, we find that the position at which
the coma is equal to zero is not in the center of the field of
vision. According to the formula for the horizontal direction,
c6 = 0 when u = 2 3 .5 , and according to the formula for the
vertical direction, when u = 4R.7. On the other hand, the
center of the crosshairs is roughly 1 8 R

. These numbers mean
that the optical system is poorly centered. The fact that there
is any coma at all in this optical system, a coma changing
linearly with u, shows that the sine condition is not satisfied
in the objective-prism system. The only peculiar feature is that
the coefficient of u in the formulas for the coma obtained from
observations along the horizontal and vertical diameters is
quite different. Effects in the prism must be responsible for
this effect. I did not investigate this behavior any further.

In early 1922, I removed the prism and examined its faces
with the aid of Newton's rings. I employed a glass slide, having
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previously determined the deviations of its surfaces from the
plane. According to my observations, the hypotenuse face of
the prism is a convex spherical surface with a radius of 1.66 km.
This explains the high astigmatism of the optical system.
Namely, this curvature on the hypotenuse face corresponds to
an astigmatism of a = +153 nm according to my calculations, i.e. /66
roughly the same as that which I found on p. 43 by the two-slit
method.

As mentioned earlier, the light source in my observations
was an ordinary electrical bulb. The effective wavelength X
of the light can be determined by measuring the spacing of the
interference strips. Let u2 - ul be the distance between two
successive interference bands, expressed in terms of screw
revolutions. Then A = Dp(u 2 - ul). With screen D4 , I obtained
by measuring the separation of the bards -- first with the
central band -- A = 569 nm, with screen D2 , A = 555 nm, and
with a grating in which the separation of the slits was 1P,
A = 577 nm.

Application of the Three-Hole Method to the Small Transit

I used the three-hole method only for investigating astig-
matism. In the screen (Fig. 10), there were 12 round holes
0, 30, 60, ... roughly 4 mm in diameter spaced around a circle
of radius 30 mm with its center at the center P of the objective. /67

Outside the circle, there was a
0 . concentric circle of similar holes

3300 O 30 15, 45, 75, .. , which formed
SO equilateral triangles with the

345 s 0 first set of points, as can be
30O 1sO OO 4s 0 0  seen from the diagram. The sides

0 07 are 15.54 mm long. The hole 0 was

2ssO 090 arranged so that it was directly
20ssO Oos above the center of the objective.

0 135 012o / rotated about the point P, was
195 165 placed on the screen. There was

2100 O0 a triangular aperture in this disk,
O so that when the disk was in the
iso appropriate position, light could

pass only through the holes 0, 15,
Fig. 10. 30 or 30, 45, 60 etc.

The observations were made as follows. A point-like
artificial star was used. The ocular micrometer was first
adjusted so that measurements could be taken in the.vertical
direction. The disk was rotated so that light passed through
holes 0, 15, 30. The central point of the interference pattern
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was aligned with the movable hairline. Let the micrometer
reading be u' The disk was then turned until holes 30,
45 , 60 were sl Aultaneously visible. A new alignment was
carried out, the micrometer reading of which we designate u'45.
Continuing, an entire revolution is made in this way. Then,
the observations are made all over again in the reverse direc-
tion, resulting in.the readings u". The final reading is taken
to be the mean value u = (u' + u")/2,.

Then, the ocular micrometer was turned through 900, so
that measurements could be taken in the horizontal direction.
The observations were made as above. To distinguish them from
the preceding ones, we now designate the micrometer readings v
and employ the same indices as above.

In Table XIV, I reproduce the entire series of observations
which I made on March 15, 1921 to determine astigmatic aberrations./ 68

The position of the disk is designated by a.

TABLE XIV.

Measurement in Measurement in
Vertical Horizontal
Direction Direction

a . a U" v .

15. 161.860 16R.33 17a.022 17.023 17 .022

.45 853 860 856 025 025 . 025

75 821 825 823 -045 050 048

105 805 801 - 804 040 049 04
135 781 782 783 0 034 035 034

165 775 774 7741 020 021 020

195 785 781 783 035 - 4 038

225 798 794 796 038 .035 036

255 814 810 812 030 '028 029

285 820 821 820 . 020 020 020

315 846 819 848 029 023 026

3s5 868 838 868 036 038 037
S= 16 8 19  = 17 032

On April 15, I made a similar series of observations. From
these series, I obtained ±OR.00 32 = ±0.18" as the mean error of
an alignment by using the differences u' - u" and v' - v" and
£ = ±0h.0023 = 10.13" as the mean error of the means u and v,
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or in linear units, ±0..46 nm. The alignment accuracy is there-
fore roughly the same as in the two-slit method using screen D4 .

19. We now show how the deviations h0 , h3 0 , h60, ... of
the wave front for the points 0, 30, 60, ... can be calculated
from the observations. As the center of the reference sphere,
we choose the point in the movable plane corresponding to the
average micrometer readings u and v. To designate the positions
of the holes, we use an orthogonal coordinate system with the /69
origin at the point P, with the x-axis upward, and with the y-
axis to the right. Let the coordinates of the two holes in
the screen be (xl,Yl) and (x2 ,y2 ) and let the deviations of the
wave front at these points be hi and h2 respectively. Let D
be the distance between the holes and, as before, let p be the
value of a screw revolution in radians. If we imagine that we
first proceed from the point (xl,Y ) of the wave front in the
direction of the x-axis along the light front to the point (x2,Y1 )and from here to the point (x2,y2 ) along the y-axis, we obtain
by applying the basic formula of the two-slit method twice in
succession:

h2 - h, = q (x2 - XI) (U - 1u) +Q (Ys - ys) (u - (33).

Applying this formula at points 0, 30, 60, ... , we obtain the
formulas

h30 -h. -- De sin 150(u,,-u)+ De cos15 0 (QS,-4
h, - hs = - De sin 450 (us, - u) + D e cos 45 0 (v,, - ),

-- --D-i-- - - - D(34)

h360 - h 30o = - D Q sin 3450 (u,45- u) + D e cos 3450 (, - ),

where
Dp = 0.00419.

Because of the observation errors, it is only in exceptional
cases that h360 = hO. The correction for the terminal error
h360 - h0 is distributed uniformly over the deviations h of
the intervening points, and the corrected deviations are desig-
nated by h'. The mean error of the differences h 1 - ho, h60 - h30 ,is DpE and hence the mean terminal error is 12Dpe =
= ±33 nm, assuming that e = ±0R.0023.

The calculations for the above observations are shown in
Table XV. In the table, h0 = 0.
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TABLE XV. /70

nm nm nm nm nm i nmDo1 0 0 0
15.0 -44 -10 -48 -40 --88-

45 +37 -7 -1101 -21 -131 88 +1 -87

75 60 +4 .16 -16 I.17 +1 -219 -218

I I 2

5 90 -15 +12 i61 -13 +48 -10 2 -1

1 5 -36 +2 +107 -6 +101 _ +7 -- 68

10 69 +3 -66 h'

165 ISO -45 -12 +49 +-49 +98 +4 +33195 210 -36 n -39n n n-63-30

102 -48i-40 -88 ol -8 +1 -87

225 + 40- --23 +4 - -12 31 -219 -21809
255 -- 7 -3 -28 43+1 -25 +

220 +1-1139 +5 -134

105 -15 12 -13 - -148 6 -142

315 +29 - 6 +86 -18 68--

1330 -80-36 46+1 -- 74

was +4 nm.

To the deviations h', we can attach the linear correctionterm Ax + By + C, because this just shifts the center of the

reference sphere in the movable plane to another position, and
increases all deviations by the constant C. We can then choose
that expression so that none of the points in question on the
wave front acquire a preferred position. We content ourselves
with supplementing the corrections h' by linear corrections sothat the deviations at points 0 and 180 are zero, and the

deviations at oints 90 and 270 are equal. The new deviations

we designate h . In Table XVI, this calculation is carried out /71for observations which I took as examples. The table also
includes results of a series of observations made 1 month later
in normal form, and the mean value of the two series.

From the table, it can be seen that the maximum curvature
of the wave front is located on the horizontal axis and the

minimum curvature on the vertical axis. The astigmatism is

a (ho + ho 2 (ho + h0o) +187
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TABLE XVI.

h- h'=-16.5(1-cosa) %21 I 1 Mean g

+41sin a /, 21 n+
ho he I h_

- -.h' h- - h' ,

nm nm nm nm nm nm nm

S0 0 0 0 0 0 0
30 -87 +18 - - -77 -47 -30

60 -218 +27 -191 -19 191 -140 -51

90 -216 +25 -191 -182 -187 ---187 0

120 -168 +10 -158. -- 187 -172 -140 -32

150 -66 -11 -77 --86 -- 82 -47 -3

180 4(33 -33 0 0 0 0 0

210 -30 -51 -81 -79 -80 -47 -33

240 -109 -60 - 19 -- 174 -172 -140 -32

270 -134 -57 -191 -183 -187 -187 0

300 -142 -43 --18 -- 187 -186 -- 140 -46

330 -74 -22 -96 --110 -1(03 --47 -56

360 0 0 0 0 0 0I 0

The mean error of the value of a obtained from the series of
observations is (/'/2)Dpe = ±8.4 nm, if e = ±0R. 0 02 3 . However,
this astigmatism parameter cannot be compared directly with
the value of a = +194 nm obtained on p. 4414since these points /72
on the wave front do not lie exactly in the same zone. The
astigmatism of +187 nm corresponds to the focal difference of
+0.241 mm.

If the astigmatism were entirely due to the spherical shape
of the hypotenuse face of the prism, hO would be proportional
to the expression sin 2 a. The expression -187sin2 a listed in
the seventh column of the table has the same values at points
0, 90, 180, 270 as the deviations of the wave front. The last
column shows that the differences between the observed values
of h0 and those calculated by the formula exhibit a rather
regular behavior. I did not attempt to discover the source of
these regular deviations. I only wish to remark that the wave
front must have further deviations beyond the pure astigmatism
proportional to the expression sin 2a, since this optical system
is poorly centered, as the previous investigation of the coma
indicated.

The Old Utzschneider-Fraunhofer Refractor

20.. The diameter of the objective is 17.5 cm, and its
focal length is 288 cm. The instrument is equipped with a
position filar micrometer, and one screw revolution corresponds
to 23.33" in stellar observations.
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I first attempted to determine the zonal aberrations of
the objective by the two-slit method, observing the pole star
on several evenings. The distance of the outermost observed
zone from the center of the objective was 75 mm. I did not
place any slits close to the edge, since the field illumination
mirror at one sighting angle would have obstructed the passage
of the light. One scale division on the screen was 1P = 6.25 mm,
so that the distance from the outermost zone to the center was
12P. Primarily, I used two screens in which the spacing of
the slits was D4 = 4P = 25 mm and D2 = 2P = 12.5 mm. The width /73
of the slits in the former was 8 mm and in the latter 6.5 mm.
In both cases, the slits were 30 mm long. I made a few experi-
ments with a screen with slits D1 = 1P = 6.25 mm apart and
only 3.5 mm wide. However, with such small slits, the star was
very difficult to perceive. The field illumination in the
instrument is very weak. Magnifications between 120 and 300
were used in the observations.

For many years, the refractor has been used exclusively as
a training instrument, and its mounting is no longer in good
condition. Although the greatest caution..was taken in moving
the screen and in turning the micrometer screw, there were
occasionally major shifts in the position of the telescope,
so that a whole series of observations had to be thrown out.
The observations were always organized so that the first and
last alignments were made with the screen in the same position,
so that I would be able to tell whether the instrument had moved
appreciably in the course of the observations. Because of the
unsteadiness of the instrument, the measurements taken as part
of its inspection were naturally not as accurate as those which
would have been obtained in examining a first-class instrument.

Using the pole star, I determined the zonal aberrations in
three directions, at the angles of sight 00, 600, and 1200,
corresponding to the readings P = 1080, 1680, and 2280 on the
position compass. Suppose that an observation was to be
made with screen D2 . The star was positioned in the field of
vision so that it would pass roughly through the center of
the field of vision after about 4 min. The screen was placed
at position -11, the movable hairline near the image of the
star, and the transit of the central interference band through /74
the movable hairline was observed by the chronometer. Then an
observation was made in each of the positions -9, -7, ..., +11,
followed by the same observations in the reverse order. One
series of observations lasted about 8 min. The screen was moved
by an assistant. In studying the P = 1080 diameter, the star
moved along the movable hairline, so the observation was naturally
carried out by turning the micrometer screw. Using screen D4,
I made observations twice back and forth without interruption.
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The calculations for the observations were performed as
follows. During the brief period of time occupied by the
observation, the motion of the pole star perpendicular to the
movable hairline can be represented by the expression

2
u' = a + bt + ct .,

where u' is the micrometer reading corresponding to the pole
star, t the time from a moment near the middle of the obser-
vations, ahd a, b, and c constants. If u' is subtracted"from
the observed micrometer readings, the remainders differ among
themselves by amounts which depend only on the deviations of
the wave front and the observation errors. In practice, I
allowed for the motion of the pole star only by calculating
theoretically the effect of the term ct2 , and derived the linear
expression a + bt from the first and last observations made with
the screen in the given position. Finally, I took the mean
values, designated by u, of the reduced micrometer readings
corresponding to the same positions of the screen.

The final values of u are ascertained from two individual
observations when screen D2 is used and from four when screen
D4 is used. Therefore, the mean error c of an alignment can /75
be calculated from the deviations of the different observations.
On March 23 and 26, 1921, I made a total of eighT series of
observations with screen D4, and obtained e = +0 .0137 = ±0.32"
as the mean error of an alignment. From six series of obser-
vati ns with screen D2 on March 18 and 26, I obtained e =
= ±0 .0119 = ±0.28". The accuracy achieved with the two screens
can be viewed as identical on the basis of these observations.
We use the value E = ±0R.0128 = ±0.30" for both screens. As
the mean error of the values u, we find in this respect u =
= ±OR.0090 = ±0.21" or ±2.9 Pm in linear units, in observations
with screen D2; when screen D4 was used, eu = 0OR.0064 = ±0.15"
or ±2.1 Pm in linear units.

The deviations of the wave front were calculated from the
mean values u in the same way as for the objective aberrations
of the small transit. Now, we can naturally determine the
deviation of the wave front in the center of the objective as
well. From the observations with screen D4, we obtain the zonal
aberrations e.g. from the formulas

A12 = 0,

0  /
h2h,+2 D4Q(u-o-ud,

ho D4 (u 2-u), (35)
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z12 =0 ,

o 0 (36)

g .

as long as we don't wish to first determine all deviations hy /76
separately by using formulas corresponding to (25) and (26).

Tables XVII and XVIII contain the zonal aberrations of
the objective which I determined on the above days with the aid
of the pole star. Since no appreciable differences were found
among the zonal aberrations determined at various angles of
sight in any of the series of observations, I took the mean values
separately of the observations with the two screens. The mean
errors listed under the mean values were calculated from the
remaining errors, and the mean error of a zonal-aberration obser-
vation was found from the same numbers and is listed in the rows
labeled ez (afterward). The mean error eS (before), on the other
hand, was obtained via the following formulas from the mean
error Eu assumed in the paragraph preceding the previous one.

J/33D4,4P; C,, =ez= --- i , =Qu 0.638DQe..

Ds=2P; = D2q . = 0.689DseE.,
(37)

E, -. EZ , D 2 Eu. 0.903 D,Q e,,

I, = D, e e = 0.968 D2 e

The mean errors of the observations made with screen D2
before and after correction agree very well, while the mean
error from the deviations of the final results of the observa-
tions made with screen D4 is smaller than that obtained before
the correction.

Since the slits in the screen were relatively long -- 30
mm -- we cannot immediately assume that the average deviations
of the parts of the wave front corresponding to the slits will
be the same as the deviations of the wave front at the midpoints /78
of the slits (cf. p. 26). Based on the curve which I had
drawn in accordance with the zonal aberrations obtained with
screen D2 , I calculated the differences:

h in the center of the slit, minus the average value of h
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TABLE XVII. /77

D P4- -,25 mmin; z,,= 0

Date p y=8 y=4

nm nm
U /,21 1080 - 62 .- 26

S. -54 -34

-, -59 -43
, -48 -34

"/, 21 -62 -33
"2/ 21 1680 -54 -54
"/,21 -52 -36
"/, 21 228o. -60 -41

Mean- -56 -38
Mean error +1.8 +3.0

,, (aft.) +5.1 +8.4
,, (bef.) +11.5 +11.5

TABLE XVIII.

D, = 2= 12.5 mm; z,, = z,, 0

Date: P y=10 y=8 Y= =4 y=2

nm nm nmi nm nm
"/, 21 108 -82 -81 -72 -49 -14

S21 -- 6 -6 -32 -14 -1
S-" -68 - -50 -35 -10

S 1680 -60 -61 -68 -56 --13
"i 21 2280 -53 -63 -52 -40 -22
"/,21 -58 -53 -52 -47 -10

Mean
Mean -64 -65 -54 -40 -11Mean error ±4.1 .-4.0 ±58 ±6.0 ±3.1

s (aft .) ±10.1 ±9.9 ±143 14.7 7.5

,, (bef. -±8.7 ±115 ±12.3 ±11.5 ±8.7
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and found values of -5, -2, 0, +1, +2, +5, +5 nm for this
difference at the points. y = 12, 10,. .8, ..... If these values
are reduced so that the corrections at the points y = 12 and
Y = 0 are equal to zero, the zonal aberrations then take the
corrections 0, 0, -1, -2,.-2, 0, 0 nm, and they can be neglected.

21. Besides using the pole star, I also determined the
aberrations of the objective using an artificial star. I employed
a point-like light source throughout. I produced this source in
the manner described previously. The light source was in the
window of a building 260 m away from the objective. The spacing
of the slits in the screens was the same as before, i.e. D4 =
= 25 mm and D2 = 12.5 mm. Moreover, I determined the zonal
aberrations for the edge of the objective with the screen D1 =
= 6.25 mm. In all the screens, the slits were only 3 mm wide
and 15 mm long. The interference bands were quite clearly
visible(. In observing the artificial star, the angular value of
one screw revolution was 1R = 23.07".

I determined the deviations of the wave front along the
diameters of the objective corresponding to the readings P = 00,
300, 600, ... of the position compass. The screen was shifted
from the negative end of the diameter to the positive end and
back, and an alignment was made after each displacement of the
screen. Each u was then the mean value of two alignments. From
the difference between the alignments associated with the same
position of the screen, I calculated the mean error in an align- /79
ment. From the six series of observations conducted with screen
D2 on April 9, and from the 12 conducted on April 11, I obtained
E = ±OR.0 1 1 9 = ±0.27" as the mean error of an alignment, and from
the 12 on April 10 with screen D4, E = ±0R.0088 = ±0.20". The
mean error of the mean value u is therefore eu = ±0R.0084 = ±0.19"
for screen D2 and su = ±0R.0062 = ±0.14" for screen D 4.

The precision of the observations is therefore greater than
for those with the pole star, but appreciably less than that for
observations which I made in studying the small transit with
screen D = 13.2 mm. The lower precision in comparison with the
latter observations was due not only to the unsteadiness of the
refractor, but also to the fact that the artificial star used
in studying the refractor was not as stationary as that used in
studying the small transit. In traveling from the artificial
star to the refractor, the light crossed a building not far
above its roof. The building was heated by day, and this exerted
an unfavorable influence on the images. One reason for the
fact that the precision obtained with screen D2 was substantially
less than that with screen D 4 was obviously that the series of
observations with the first screen were twice as long as those
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with the latter, so that the motions of the instrument were

greater in the former series. In some series, there was a
clearly systematic behavior to the differences between alignments
corresponding to the same position of the screen, a behavior
originating in the motion of the instrument. A series of obser-
vations in which this difference amounted to almost 2" was
repeated.

Table XIX contains the zonal aberrations calculated from
the observations with screen D2 . I have placed the zonal aber-
rations obtained from measurements along a given diameter in /80
one group, and put the mean values in the last row of the group.
The values in the first row of each group are from the obser-
vations on April 9, and the remaining ones were found from the
observations on April 11. The diameters P = a and P = a + 1800
are naturally the same, so that the zonal aberrations correspond-
ing to them can be directly compared with one another.

At the bottom of the table are found the mean error Es (aft.)
6f a zonal-aberration observation derived from the deviations
of the individual observations, the resulting mean error eM of
the individual group means and the mean error Es (bef.) of a
zonal-aberration observation calculated from the values of ,u
mentioned previously. Ez (aft.) and ez (bef.) are essentially
identical. The final rows contain the mean value of all obser-
vations, its mean error, derived from the remaining deviations
of the individual group means, and the same mean error derived
from the mean errors eM. Judging from the mean errors, it is
likely that the differences between the zonal aberrations
obtained from the measurements along different diameters are real.

The corresponding results of the observations made with
screen D4 on April 10 are collected in Table XX. If the results
of the two tables are compared, it is evident that the greatest
differences between the zonal aberrations obtained from the
various diameters in the two tables head in the same direction
(see e.g. P = 1500.)' Between the values z8 for the two screens,
there is a difference which heads in the same direction as in
the pole-star observations.

As the final zonal aberrations z8 and z4 , I take the mean
values from the results with both screens, and I derive the
zonal aberrations of the remaining points from the results
obtained with screen D2 , by interpolating the systematic
reduction based on the zonal aberrations z8 and z4 .
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TABLE XIX. TABLE XX. /81

D,- 2P -12.5mm; z,,-r, 0 D,- 4P- 25 mm; r,,r.0 '

nm nm nm nm nm .nm nm
00 -59 -48 -46 -40 -16 0 -39 -48

0 -46 -49 -42 -55 -25 180 -58 -50
180 -58 -60 -49 -37 -6 Mean --48 -49
Mean -51 -52 -- -44 -16 30 -63 -58

30 -51 -70 -51 -40 -33 210 - -40 -44
30 -60 -60 -52! -38 -12 Mean --52 -51

210 . -58 - 64 -701 -3 -21 60 -58 -64
Mean -57 - - -59 -44 -1y 210 -43 -25

60 -33 -40 -441 -34 0 Mean 50 -44

60 r-57 -67 -0 -60 -2490 -46 -34
240 -39 -38 -43 -38 -31 270 -45 -39

Mean. -43 -48 -49' -- 44 - Mean -46 -3

90 -56 -66 -46 -48 -25 120 -50 -22
90 -55 --72  -52 --12 -10 300 -46 -36

270 -62 -72 -66, -44 -16: Mean -48-2
Mean -58 ,-,.- 17-

S150) --66' -58
120 -60 -62 -30: -151 +4 330 -78 -63
120 - 71 -76 -46 -- 42 -28 Mean -72 -601
300 -67 -72 -61i -48 -i18 17.3 19.0' I . ±73 1 -9.0,

Mean -66 -70 -46 -35 -14 t .t. )03 112.8
150 -6 -66 -781 -76 -3)1 'rbef.
1;50 -67 -76 -78 -76! -26 Gn. Meani -53 -45330 -72 -87 - -71 -20 Mean Error -4.0 1 4.5

.- "20 1
Mean -38 -761i -80' -741 -2: Man Erro . 3:0 ' i from '" r ±3.0 ±3.7

±3.9 ±5.53 ±5.6 -Hi.2 6.3
0. (aft'.) ±6.8 ±9.2I ±9.7 +10.7 ±11.0
': ef. 8.1 1+10.f 11.4 l+106 ±8.1

4en. Mean -58 -64i --56 -48 -17
Mean Error ±3.7 ±4 8 ±53 i ±5.5 ±2.3
Mean Eirror

from fM .j1.6 ±2.2 ±2.3f 2.5 ±2.6

Hence, we take the values /82

z = 0,. -55, -59, -53, -47, -17, 0 nm

as the final zonal aberrations at the points y = 12, 10, ....
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From the measurements taken with screen D1 = 6.25 mm at
the periphery of the objective, I determined (using the above-
mentioned fundamental values) zonal aberrations for the zone
y = 11 and also.for the zone y = 13P = 81.25 mm near the edge
of the objective. From my observations on April 22 for diameters
P = 00, 300, ... , 3300, I obtained zil =-44 nm, z1 3 = +73 nm.
In these observations, the mean error of an alignment was ±OR.0 1 8 =
= ±0.42". The zonal aberrations of the refractor are depicted
graphically in the table at the conclusion of the treatise.

22. In this connection, I mention a general formula by
which the mean error of the zonal aberration for the zone half
way between the center and the edge of an objective can be
determined. Let us assume that the separation of the slits is
1/n times the radius of the outermost zone. Let n be an integer.
Then, the mean error is

E 8 1 nDei,,. (38)

Here, nD is the radius of the outermost zone.

Let us examine how accuracy varies when the spacing of the
slits is modified. When the distance between the slits is
very small, we can consider the alignment error to be propor-
tional to the number n (cf. p. 34), so that Eu = n 0 , where c0
is a constant. Then,

Ll o VnnDe,,.
" (39)

Accuracy therefore rises as the distance between the slits /83
increases. Continuing to increase the distance between the
slits, we find that the increase in alignment accuracy gradually
comes to a halt, until the accuracy is essentially independent
of the spacing of the slits beyond a specific limit. From
formula (38) we find that the accuracy of the zonal-aberration
determination decreases while the distance between the slits
increases. However, if we allow for the fact that the number
of observations which can be made in a given period of time
is proportional to the distance between the slits, we arrive at
the result that the mean error esz,,is independent of the spacing

n
of the slits, as long as a given Rmount of time independent of
the length of the series is employed for each observation.
Utilizing a fine slit spacing has one thing in its favor,
namely that the zonal aberrations at several points can be deter-
mined at the same time.
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In general, the maximum alignment accuracy ought to. be
achieved when the distance between the slits is still relatively
small. In studying medium-sized telescopes, there is no point
in making the distance between the slits more than about 3-4 cm.
If the separation of the slits is about 1/6 or 1/8 of the radius
of the outermost zone, the values obtained will already furnish
the basis for a zonal-aberration curve, presuming that the
wave front has a simple configuration. Extra points are most
useful for the peripheral zones, because there the variations
in the: Wave front are usually large.

23. I now mention briefly the results of my coma studies.
From observations which I made in determining zonal aberrations,
I found that the wave front did not exhibit any appreciable
asymmetry, as long as the image was in the center of the field /84
of vision. On April 12, I determined with screen D2 the coma
from observations along diameters P = 00, 900, 1800, 2700,
while the artificial star was situated at the edges of the field
of vision at micrometer readings u = 6R and 5 4

R . The results
are found in Table XXI.

TABLE XXI.

C

C, = C* 0.

P u .- 10 =8 .y=6 y=4 y=2

nm nm nm nm nm
0 54 -22 -10. -11 -8 -6

6 R  +5 -2 +8 +13 +11
Diff. -27 -8 -19 -21 -17

180 54 " +8 I-1 -- 12 +12 +6
6 +17 +36 +30 -+27 +12

Diff. -9 -37 -42 -15 -6

270 54R  +10 -. 2 -6 -3 -2

6 R +34 +15 +18 -2 -6
Diff. -21 -17 - -24 -1 -44

90 5R -6 -0 - 4 .+4 +14
6R -4 -6 +5 +5 +6

Diff -2 I 4-6 -9 -1 4-8

'Mean., Diff. -16 -14 -24 -10 -3
Mean error ±6 ±9 ±7 ±5 ±-,

From the table, it can be seen that the image is almost
coma-free over the entire field of vision. It is well known
that the Fraunhofer objective design is close to that design
in which the sine condition is satisfied.
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By measuring the separation of the interference bands, I
obtained as the effective wavelength of the light source A = /85
= 572 nm with aperture D4, \ = 573 nm with aperture D2 , and
A = 584 nm with a grating in which the slit spacing was 6.25 mm.

24. Using the three-hole method, I studied-the astigmatism
of the objective by determining the aberrations of the wave front
in a zone of radius 75 mm. The measurements were taken in the
same fashion as in the investigation of the small transit, but
the number of holes was twice as large so that the aberration of
the wave front was determined at 24 points in that zone. The
distance between adjacent holes was 19.57 mm, and the holes were
5 mm in diameter.

I will mention only the final results of the four series
of observations made on April 20, 1921. From differences in
the alignments made with the same aperture position, I found
the mean error of an alighnment to be +OR,0.1 3 8 = +0.32",
which means that the mean error of each u and v is s = ±0R.00 9 8 =
= +0.23". According to this mean error the mean final error
of a series of observations would be /24 Dpe = ±105 nm. In fact,
the final errors are +26, -46, -72, and +79 nm, and therefore
much smaller. The aberrations of the wave front are shown in
Table XXII.

The fourth column of the table contains the mean values
of the aberrations at points lying along a given diameter.
These can be approximated by the formula

h = -34 + 39 cos 2(P + 120),

and these calculated values are entered in the fifth column.
The last column contains the differences between the values of
the preceding two columns.
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TABLE XXII. /86

P l Ihp+, l Mean , " DLft.

.nm nm nm nm nm
0 0 0 0 +2 -2

15 -13 .- 3 -8 -11 +3
30 -31 -29 -30 -30 0
45 -66 -47 -56 -50 -6
60 -69 -66 -68 -66 -2
75 -- 67 -62 -64 -73 +9
90 -82 -82 -82 -70 -12

105 -69 -24 -- 46 --57 +11
120 -66 -10 -38 -38 0
135 -50 0 -25 ' -18 -7
150 -40 +22 -9 -2 -7
165 --10 +40 +15 +5 +10

The mean value (hp + hP+ 1 oo)/2 can also be determined by
the two-slit method from the o servations along various diameters.
I calculated these mean values from the observations made to
determine zonal aberrations, and found almost the same astigmatism
properties as I had found earlier with the three-hole method.
However, the latter method is preferable in studying astigmatism
for easily understandable reasons.

The Large Transit

25. In this instrument as well, the objective is a product
of Utzschneider & Fraunhofer. Its diameter is 16 cm and its
focal length 240 cm. The instrument was used in its time to
observe the Helsinki zone of the A.G. Catalogue. The objective
was considered good.

On April 19, 1921, I determined the zonal aberrations of /87
the objective by the two-slit method, observing the pole star
in inferior culmination. The slits in the screen were 30 mm
long and 6.25 mm wide, and their centers were 12.5 mm apart.
The outermost observed zone was 75 mm from the optical axis.
I studied only the horizontal diameter of the objective. The
screen was shifted back and forth three times, so that a total
of six alignments were made in each position of the screen.
The mean error of an alignment was ±0.42". From the obser-
vations, I obtained the following zonal aberrations.
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TABLE XXIII.

Zone radius in m . 75 62.5 50 37.5 25 - 12.5 0
Zonal ab-. in nm . 0 -58 -93 -86 -73 -27 0
erration
ean error ..r... ±7 19 ±10 -±9 ±7

The mean errors are derived from the mean error of an
alignment.

Application of the Three-Slit Method

26. At home, I studied small objectives and the parabolic
mirror I had ground myself, using almost exclusively the three-
slit method, since this method does not require that the i:j;l
investigation apparatus be extremely steady, a property hard
to achieve in an ordinary living room. As an example, I will
take the parabolic mirror which I ground for the "Ursa" astro-
nomical society. The mirror was 17.5 cm in diameter. I used
an artificial star placed close to the center of curvature of
the mirror. The focal length of the mirror was 120 cm. In the /88
investigation, the mirror was unsilvered.

The investigation apparatus is depicted schematically
in Fig. 11.

A is the light source
(the filament of an electric

Sbulb), and B a microscope
objective which projects the

- image of A into the 0.1-mm

K hole in the screen C. The
microscope objective D reduces

.* 1 j the resulting point image,
and the prism E reflects the
light beam toward the mirror
F under investigation, in

--C front of which is a movable
screen G with three slits in
it. Reflected by the mirror,

A the light beam passes the
SI prism E and generates an

Fig. 11. image near the center of
curvature of the mirror.
This image is viewed with

the powerful ocular H the motion of which in the direction of
the optical axis is read off the scale K divided into millimeters.
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The slits in the screen were 25 mm long and 5 mm wide, and
the midpoints of adjacent slits were D = 20 mm apart. Accordingly,
the distance between adjacent marks on the scale showing the
position of the screen G was 1P = 20 mm. The outermost investi- /89
gated zone was 80 mm from the optical axis.

The observations were made as follows. The screen was
placed so that the slits were situated at the points -4, -3,
and -2. For the sake of brevity, we say that the position of
the screen was -3. An observation was made (see p. 15),
obtaining the readings w' and w" on the scale of the ocular.
Next, observations were made with the screen in positions -2,
-1, 0, 1, 2, and 3. To save time, I have made such simple obser-
vations when grinding mirrors. Table XXIV contains my observations
on December 17, 1921. w is the mean value of the readings w' and
w", and w0 = (w + w )/2.

y y -y

TABLE XXIV.

y ' iv" Iv i

mm mm mmi mim

-3 M.4 63.2 5&84) 59.00
-2 543 . 62.6 58.45 '58.22

- 1 51.5 59.8 5 5.65 55.68
0 49.2 58.1 53.6. 53.65.

+1 .51.2 60.2 55.70

+2 53.4 62.6 58.00
+3 54.8 6,3.6 59.20

27. Let b be the approximate distance between the image
and the mirror, and let w be the average position of the ocular,
and let us imagine that the center of the reference:3sphere is
located in the corresponding movable plane. We use the symbols

A h +- + h+1 hy,
ashy '= Ah, -AhY_-1- "_hu+ 1- 2 h + hu_ "  (40)

It is then easy to find the following basic formula /90

ih o (41)63

63



The calculations can be done e.g. as follows. First, we
take h-4 = h = 0. Using formulas (40). and (41), we determine
the remaining deviations h- 2 , h-. , ... , h. By attaching a
suitable expression a + Oy + yy2 to the deviations, changing
only the reference sphere, we arrange that h 4 = h0 = hq = 0.

Also, w and Ah 3 can be determined in advance so that h_4 =

= h0 = h4 = 0. One then makes use of the formulas

- 1
W = j(w-a+2w-2+3w-1+4mo+3wl+2w+ws),

A'h =() (w - )2)

Ahs-=- (3A2h 2h 2h 2 + A'h_,),

h-4  0.

By means of formulas (40), the remaining deviations are obtained,
as well as two controls, since h0 = h4 = 0.

If we desire only the zonal aberrations, we take the mean
values w0 = (w + w )/2 and then use the formulas (42) and (40),
substitu ing w = W- w in them everywhere. In our example,
the calculation of tKe zonal aberrations is organized as follows
(see Table XXV).

TABLE XXV.

w y w - iii A'h I Ah h Red. z

mm mm nm nm nm nm nm

4 0 0 0
3 59.00 9.00 +2.78 +178 +534 _ -189 +183 -6--112 58.22 16.44 +2.00 +128 +256 -200 +139 -61
1 55.68 17.04 ,--.5 -34 -34 -83 +44 -39
0 53.65 7.30 -2.57 -164 0 0 0

49.78 +756

w - 56.22 Ah - -189

The artificial star was a = 2300 mm from the mirror, while
the image was b = 2500 mm away. In order to. find the deviations
of the wave front when the star is at an infinite distance, the
reduction
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is to be applied to the deviations h, where F is the focal /91
length of the mirror and yO the radius of the outermost zone.
Taking this reduction into account, we obtain the zonal aber-
rations listed in the last column of the table. The deviations
of the surface of the mirror from a paraboloid are exactly equal
to half the numbers z.

28. I will now devote a few words to the precision of the
observations. From several series of observations which I made
in grinding the mirror mentioned in the example and another
mirror of equal size, I calculated the differences w" - w' and
then the mean error of a w from their deviations from the mean
value. I found ew = ±0.17 mm. For the mean error of the
zonal aberrations, I derived the following formulas:

1 , (44)
_ 16 b E 0 ,

Taking; w = ±0.17 mm, we obtain ez = ±6 nm, z2 = ±7 nm, /92

Czi = ±4 nm. The accuracy is therefore quite satisfactory.
1

In the general case in which D is 1/n of the radius of
the outermost zone, where n is an integer:, the mean error cZl

of the zonal aberration for the zone halfiway between the center
and the edge of the objective is obtained from the following
formula, which I will not derive here for the sake of brevity.

.3/n TY(n+ 5) D (5)

If D is small, (D/b.)2 w can be viewed as roughly constant.
I observed this in the experiments, and it seemed natural after
some reflection. From (45), .one then finds that n should be as
small as possible and hence D as large as possible in order
that zl be determined as precisely as possible. If D increases,
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so does (D/b)2 w, albeit gradually, and finally a limitiis reached
after which E w no longer diminishes appreciably. Then, the
accuracy of the zonal-aberration dete'rmination decreases while
D increases. The most favorable value of D must be determined
empirically. In studying the 17.5-cm mirror mentioned in the
example, the aberration of zone y = 40 mm would have been somewhat
more accurately determined with screen D = 40 mm than with screen
D = 20 mm, but in view of the fact that the latter screen would
still have to have been used to interpolate the aberrations of
zones y = 60 mm and y = 20 mm, requiring substantially more time
for the observations, I contented myself with using just screen
D = 20 mm.

From the difference w" - w' (p. 63), the effective wave-
length of the light source can be determined by means of the
formula (cf. pp. 14-15)

2Vn /93

F (46)

From several observations with screen D = 20 mm, I obtained
the mean value w" - w' = 8.83 mm, corresponding to A = 565 nm.

I also carried out some experiments using the three-slit
method with a star as the light source, and the method proved
quite usable in this case as well. Since the rapid motion of
the star is not detrimental, as it would be in the two-slit
method, first-magnitude stars can be used as observation
targets. In the northern latitudes, for example, Vega and
Capella are very suitable for this purpose.

Michelson's Method and Other Applications of the Methods

29. Michelson's method, which was already referred to in
the introduction, differs substantially from the two-slit
method described above in that Michelson held a slit at the
center of the objective during the entire duration of the
measurements and gradually shifted the other slit from near
the center toward the edge. Both of Michelson's experiments
were .conducted in the laboratory using monochromatic light
and a highly magnifying microscope. In these measurements,
the method did prove thoroughly practical, but it is evident
that Michelson's method would be beset by many difficulties
in observatories, where it is mainly natural or distant
artifical stars which are used. It was mentioned'on p. /83 /94
that the alignment accuracy eventually quits increasing as
the distance between the slits is enlarged, because of air.
turbulence. This occurs when .thel slits are several centimeters
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apart, and is the reason why the deviations of the peripheral
zones are determined most poorly, and why, in fact, the align-
ment of the central interference band can be impossible because
of air turbulence when the peripheral zones of large telescopes
are investigated. In refractors, the secondary spectrum also
makes it very difficult to distinguish the central interference
band from the remaining ones when the separation of the slits
is large. In some cases, Michelson's.method requires a special
ocular microscope, since ordinary magnifications are not good
enough for clear observation of the fine interference figure.
The circumstance that the size of the interference figure changes
with the separation of the slits can induce systematic alignment
errors. In this respect as well, my method should be better.

30. I would also like to mention two modifications which
I envisage in the two-slit and three-hole methods, so that it
will no longer be necessary to keep the instrument stationary
except for a short period of time. The basic idea of these
modifications is that a second image of the star is obtained
in the various methods, and this image is independent of the
interference figure generated by the movable screen. I will
describe this procedure in the application of the two-slit
method; it requires only minor revisions to apply it to the
three-hole method as well.

In one modification, the comparison image is produced by
means of a small prism, the prism angle of which is so small
that the light beam is only deflected by a few tens of arc
seconds in passing through it. Assume e.g. that the movable /95
screen is in the horizontal direction. Above or below the
movable screen, two slits are made in the strip which holds it,
the slits being parallel to the slits on the screen. The
prism is fastened to the slits of the strip. In that case, two
separate interference figures are visible simultaneously. In
each position of the screen, an alignment is made on the central
bands of both figures. The telescope must therefore be stationary
only for a few seconds. In photographing, both figures are
imaged at the same time. It is useful to turn the prism into
such a position that the interference figures are as close as
possible to being one above the other, since then the observations
can be made with a minimum of screw rotation. Using a simple
prism naturally suffices in all cases, since the prism angle
is so small that the prism does not generate any appreciable
spectrum, and moreover, any such spectrum would never make the
interference figure asymmetric about the central band as long
as the prism has been turned into the given position. In observ-
ing the pole star, one can even get along without movable
hairlines, either by turning the prism into. such a position that
the transit of the' two images at a fixed hairline takes place
in a very short time, or by observing the transits of the bands
over two different hairlines.
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The second procedure uses extrafocal images. As in the
first modification, the slits are made in the fixed strip as
far as possible from the movable screen. If, in both slit
systems, the separation of the slits is small in comparison
to the semidiameter of the objective aperture, two independent
interference figures are produced in the movable plane, once
the movable plane has been pushed inward or outward a suitable
distance from the focus. The measurements are then made in
the same way as in the first mcdification. The observations are /96
to be made while the movable plane is inside and then outside
the focus. The first section of the calculations is done in
the same way as in Hartmann's method. By this method, I deter-
mined the zonal aberrations of the 17.5-cm refractor with a
short series of observations, and, on the whole, obtained the
results given earlier. This modification is not completely
satisfactory, however, since the correction term n" (p. 25)
may assume measurable values. In my opinion, the reliability
of the method therefore requires detailed study based on
suitable experiments.
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IV. ASSESSING THE QUALITY OF OBJECTIVES /97

Lehmann's Technical Constant

31. Lehmann's technical constant T is calculated by the
well-known formula [13]:

20000 Xr'iF-F.J
F (47)

For the calculation, the objective is broken up into many zones
of equal width. r is the radius of the general zone and F its
corresponding: focal length. FO is an average focal length.

The value of T depends on the value chosen for F0 . It
might appear most natural to determine FQ so that T is minimized.
This is the way Fox calculated the technical constant for the
large objective of the Yerkes observatory [14]. However, since
the FO corresponding to the minimum of T cannot be calculated by
a simple formula, attempts have been made to determine FO in
other ways.

In his calculations of the technical constant T for several
large objectives, Hartmann employed two different methods to
determine FO [2, p. 102]. In most cases, the mean value of the /98
focal lengths of the different zones was chosen as F0 . In
other cases, however, Hartmann believed that this method wouldi
not accurately reflect the correction of an objective, and he
chose as the movable plane the plane in which all light beams
passing through the objective compress to the smallest area,
and which is calculated as follows [2, p. 45].

"If Fl and F 2 are the extreme values of the focal
length nearest to the edge of the objective, correspond-
ing to radii rl and r2 , the smallest geometric scattering
disk is obtained at

p Fr*r " (48)
r, 4- I

These procedures, particularly the latter, were also used
later in calculating the technical constant in order to determine
the movable plane.

We wish to show the results which will be obtained by
these methods for determining the movable plane in two typical
cases, namely for pure spherical aberration and for typical
zonal aberration.

69



Let the radius of the objective aperture be R. We use the
symbols

= ,A=F-F'
F - F' (49)

where FO is an average value of the focal length.

Pure spherical aberration is represented by the formula

A k. (50)A= k, q', (50)

and the following formula expresses the typical zonal aberration
at which the central and peripheral beams have the same focal
lengths:

A = k, (e - k'). (51)

If the objective is divided into infinitely many zones, /99
the definition of the technical constant is obtained in the form

T - o r !A- o'dr (52)
o

or else

T= 4.10'. fr ,A-A o de.
0 (53)

We now consider the case of pure spherical aberration. We
determine A0oat first so that T attains its minimum value TO.
By calculations, with which I will not bother the reader, we
find

A - , = k, (e- ,) = k, (Q' - 0.62996),

T. -')(1. (I k PI,; 1 I (54)

If, on the other hand, the adjustable plane is chosen so
that one takes the mean value of the focal lengths of all zones,
we find
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and the corresponding technical constant is

T,= 42398 R = 1.43 T,.

If we calculate A0 by Hartmann's second method, we find

A - Ao =- kl (2 - ),

T =53333 =1.80 To.

As is evident, both T1 and T2 are quite different from T0 .
The second method is obviously totally unsuitable in this case,
since the differences will then all have the same signs. /100

We perform the same calculations for the case of typical
zonal aberration. By the minimum condition, we go through
relatively tedious calculations to find

A - Ao = k, (q' - ' - 0.1933),

To= 7978 k' R (55)

By Hartmann's first method, we find

a:-- AO = k2 (e2 - Q- 0.1333),

T=9761~kR= 1.22 To,

and with the second

A - A, = k, (e' - e' - 0.1035)

T,- 11746k- =1.47 To.

In this case, T1 and T2 do not differ as much from TO as in the
case of pure spherical aberration, but the difference is still
considerable.

As mentioned, Hartmann states that his first method is
not suitable for determining the movable plane in some cases.
From the above calculations, however, we see that Hartmann's
second method cannot be used at all in cases like that of pure
spherical aberration. By contrast,. typical zonal aberration is
reminiscent of cases: in which Hartmann's second method would be
usable. By choosing the most appropriate of these methods for
each individual case, it ought to be possible to determine T
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properly in many cases, although the resulting values will
generally be larger than those calculated. from the minimum con-
dition. On the other hand, it is undeniable that it may be
difficult to decide which of the two methods to employ in
complicated cases, and the result of the calculation will acquire//101
a subjective stamp. Therefore, I think it preferable to give
priority to a method of calculation applicable in all cases
without yielding highly erroneous results, and in which T does
not differ too much from the minimum value of T if this can
somehow be accomplished.

32. Various ways of determining A0 are contained in the
formula

f en Adpe

ao=--= (n + 1) enAde (n>O ).

S0o 
(56)

0

The larger the value of n, the greater the weight given to the
peripheral beams.

The case n = 0 is identical with Hartmann's first method.

If n = 3, it is easy to show that we can find the adjustable
plane in which the sum of the squares of the lateral deviations
of the light beams is minimized. Determining A0 in this way,
we will obtain, in the zonal-aberration cases discussed above,
values for T differing very little from TO; namely, for pure
spherical aberration we find a technical constant of 1.007 TO
and for typical zonal aberration 1.047 TO .

In our examples, the technical constant differs even less
from TO, when n = 2 and A0 is therefore determined by the formula

0= 3 J e2 Ade

Fox employed this formula in the form of a finite sum in /102
the previously mentioned case, in order to find an approximate
value for TO . By improving it, he then looked for the plane in
which T was minimized. However, this minimum was only slightly
less than the first approximation to TO.

In the case of pure spherical aberration, we obtain, deter-
mining A0 by the last formula
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T 29744 R =.1.005 To

and in the case of typical zonal aberration

A - Ao= k2 (' - q - 0.1714),

T= 8237 "I= 1.032T,.
F0

Practically speaking, the technical constant found in both
cases is identical with TO . It seems very natural that the
latter method for determining the adjustable plane would not
yield totally erroneous results in more general cases either.
Moreover, this method makes calculating the technical constant
relatively simple, since the value of the integrand p2A cal-
culated to derive A0 can be employed in calculating T.

Consequently, I propose that the latter method be employed
in all cases to calculate the technical constant based on the
focal lengths, i.e. that T be calculated by the formulas

0
S (57)

T= 4.10S-f el -oAde.

With the aid of these formulas, I have calculated the value/103
of T over again for the objectives, the technical constants of
which Hartmann had reported in his previously cited work, and
also for some other objectives, the zonal aberrations of which
I was able to discover in the literature. The results are col-
lected in Table XXIX. The most noteworthy change was found for
the technical constants of the objectives of Pulkowa and Ottawa,
which were, according to the new calculation, less than half the
previously calculated values. No great changes were encountered
in the constants of the remaining objectives. For some objectives,
my value was even larger than the previous one, which can be
explained by the fact that I extrapolated the focal-length curves
to the edge of the objective, where the deviations are usually
the greatest.

Diffraction-The'oretic Technical Constant

33. As mentioned in the Introduction, Strehl thought that a
good standard for the quality of an objective was the ratio

73



between the light intensity at the center of the diffraction
pattern produced by the objective and that at the center of a
diffraction pattern produced by an aberration-free objective
of equal size. Since the brightness of the center of the
pattern changes depending on how the telescope is focused, one
must attempt to determine the movable plane so that the bright-
ness in the center of the image is as great as possible.

As before, we use h to designate the deviation of the light
front from the reference sphere at a distance r from the optical
axis and at the azimuth w. In the center of the reference
sphere, the light intensity is proportional to the expression [151:

I = C ' 2 + S ' 2  /104

where

2r R

. C, -cos rdr d,
0 0

2c It

S= f sin rdr d
o' 0

or, setting q = (r/R)2 = p2,

2x I

C' =-1R2 Cos h1-dq d-,
0 0

s2w !sin 21 h

0 It

Assume that the objective has only zonal aberrations. Then, h
depends only on q and we obtain

C' = .R' cos - dq,

S'= srR2 sin dq.
U
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For an ideal objective, h = O, .and accordingly

C = .rR', So = o,, = 2 R'.

The technical constant Z corresponding to the definitioni'of
Strehl is therefore obtained from the formula

Z =L= C' + S2, (58)

where

. .r /105
- cos dq,

0

t - (59)
S = f sin 2 kdq.

Since the cases occurring in practice seldom have deviations
of the wave front which can be represented by simple analytic
expressions, the integrals C and S must generally be evaluated
by numerical integration. However, in the case that the devia-
tions of the wave front are very small, the calculation of Z can
be set up more simply by substituting series expansions for the
trigonometric functions in the integrands.

For brevity, let

6 = 2nh/X. (60)

We obtain

0

C= (I--2 + d4 do + d_ + o - 'dq,

1 4tr

Sf(J - + - + ..)dq.
.0

Let

y= dq, r,= f ddq, r=J ddq,.., (61)
0 0 - 0
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Then
1 1 1 1

C = 1 + 27 - 720 + 0320- +

I 1 1
S = r -6 T + y s .- 40 + --'

and

,+2 Y.)+(I ' ". '
z= 1+ 2--- +)+ r 2+ 36 2 + /106

+ + 4 Y T - 3 s6J (62)
1 1 \

2520 Y' r1 + 20160 +

34. Now assume that the deviations of the wave front are
so small that the higher-order terms can be neglected. Then

Z-l-(Y,-r)+.-. .

We now determine the reference sphere so that Z is as large as
possible, so that

(= I-)= hdq- hdq
0 0

is as small as possible.

A very small change in the reference sphere, without
changing the optical axis, turns the deviation h of the wave
front into the deviation h', the latter being obtained from
the equation

h' = h + aq + b,

where a and b are constants which depend on the change in the
reference: sphere.

In that case, T becomes

e= fs dq -( h'dq=
0 a

1 I 2 1 . i

= fdq +a 2 hqdqf- dq)4 + .
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Therefore, b has no effect on the. value of z', as would have
been anticipated. r' is a minimum when

a=6 Adq-2fhqdq /107
0 0

The corresponding minimum of T' is

o h's"dq.- h'dq
0

Sfhdq- (fhdq) -3 hdq-2 fhqdq.
0 o 0

Substituting

h=h'-fh'dq=h+aq- '(a+ hdqj

we find

o h'dq.
0

Hence, rT is the mean value of the squares of the deviations
h of the wave front. The square root

1/,ro

we term the mean deviation of the light wave front, analogous to
the term "mean error" used in the least-squares method. In
reality, the deviations h are then the remaining errors obtained
when the least-squares method has been used to determine the
sphere which best fits the wave front, and e is the mean remain-
ing error.

We now correct the formulas for calculating the mean
deviation. We calculate a oh

a=6 dq-2 hqdq),

o /10 8

h=h +aq- (a+ hdq (63)
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i.e.

|I I I* I .

ef h2dq- hdq -3 Ihdq-2f hqdq. (64)
0 0 00

Finally, when the deviations of the wave front are sufficiently
small,

2
z (65)

Hence, if the deviations of the wave front are very small,
Z depends only on the mean deviation c and not at all on the
configuration of the wave front. The number E can be viewed as
a standard for the quality of an objective which is just as
good as the number Z. When the deviations of the wave front are
so large that the higher-order terms in the expression for Z can
no longer be neglected, the constant Z can naturally no longer
be calculated with the aid of s by itself, but the mean deviation
c can still be viewed as a standard for the quality of the objec-
tive, since in general Z decreases as e increases.

If the deviations of the wave front are so large that the
series expansion of Z does not converge rapidly, it is best to
calculate Z by numerical integration using exact formulas. For
simplicity, the e:fe:eence sphere can then be determined as in
the calculation of the mean deviation el . In executing the cal- /109
culations, one therefore employs the deviations h, or else the
deviations h', which would yield an identical result.

The reference sphere can also be determined graphically.
This is the way Strehl did it [16]. The deviations of the wave
front are plotted on the vertical axis and q on the horizontal
axis. The surface of the sphere is then represented by a straight
line in the diagram. The line which best fits the curve repre-
senting the wave front can be drawn quite well by examination.
The graphic method can also be used, of course, to do the inte-
grations. Namely, the mean deviation can be calculated rapidly
by the graphic procedure.

35. We will first apply our formulas to pure spherical
aberration and to typical zonal aberration. The deviations h
of the wave front are computed from the focal-length deviations

Of course, this reference sphere is not precisely the same as
the sphere which minimizes Z.
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A using the differential equation

dr - F(66)

which we can also write in the form

dh=l( (67)

In practice, an average focal length FO can be used on the right
side of the equation in place of F. We then obtain

q

h = dq, (68)
0

if we assume h = 0 in the center of the objective.

In the case of spherical aberration, /110

A = klq.

By integration, we obtain

h R .  1 = x q; = ( (69)

Using the formulas we have derived, we find

X. R k,

- 24/5' (70)

I e t2y 1 2ic 1 n,
a = k 2 (q - q2 )

or, when xa is expressed in terms of n,

ZI= 1 + 3 ! 4 ....Z" W (71)

In the case of typical zonal aberration, we start with
the equation

a = k2(- q2)

and obtain
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.. . - -q- q32

13 3_
= q+220-q+ 2

s , k . (72)
20;/7 \F0 120;/7

Z - -N' 8408 .000 -. .
- -,2n, - (2 ) -
Z.: 1 --- + (2-

We take one further example, in which the number of zones
n can be arbitrarily large. Let

h =rxcos2rnq (73)

We obtain /111

(74)

Z [Jo ' P = J 2

where JO is the zero-order Bessel function, i.e.

.(x) cos (xrcos ) d .

The series expansion is
Z=1 - ) + 3 2. .

Z 72 ,+'"(75)

Hence, Z is independent of the number n of zones.

Figure 12 depicts the deviations of the wave front in the
three cases discussed above. Among the cases with many zones,
n = 2 was chosen. The abscissa in the diagram is not q but the
radius p. For all curves, e was chosen to. have the same value.

In examining the series expansions of Z in terms of e in
these three cases, it can be seen that the corresponding coef-
ficients in the various series do not differ very much, so /112
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L - i)t that it seems likely that the
values of Z corresponding to
the same E in these three cases
will also be roughly equal even
when e is rather large. The

% N purpose of Table XXVI is to
show how Z varies with s in my
selected examples.

In the first column, E

wavelength of the light. In

Fig. 12. the next two columns, this
number is converted to nanometers,
first by assuming X = 560 nm,

i.e. the wavelength of the optically most effective light, and
in the second by assuming X = 430 nm, i.e. the photographically
most effective light. The three following columns give Z for the
cases of pure spherical aberration (Z1), typical zonal aberration

(Z2 ), and the many zones (Z3 ). In the last column, Z has been
calculated with the aid of the first two terms of the series
expansion, i.e.

Z,= 1 _ (.2 )'.

TABLE XXVI.

S 1'= 560 n = 4n ,"
.nm namI

0.00 nm 1.0( 1.W 1.(X) 1.(WX)
0.02 11 9 - 0984 0.984 0.984 0.9841
0.02 22 17 0939 0.939 0.938 0.937

0.06 ' 34 26 0.86(7 0.867 0.815 0.8K8
0.0 45 34 0 773 0.774 0.770 0.747
0.10 " 43 0. 0 668 0.660 0.605
0.12 67 2 00.553 0.555 0.541 0.432
0.14 78 " 60 0.442 0.444 0.421 - 0.226
0.16 . 90 69 0.341 0.340 0.308 -0.011
0.18 101 77 0.252 0.217 0.208 -0.279 I
020 112 8r 0.181 0.169 j_ 0.125 ._ -0.579
0.22 123 95 0.131 0.107 .0.062 -0911
0.24 134 103 0.099 0.061 0.022 -1.274
0"26 146 112 0.084 0.029 0.002 -1.669
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Z is depicted as a /113
function of E in Fig. 13.

As can be seen from the
diagram, the curves for Zl,

Z2 , and Z3 do not differ
markedly until large values
of e, and are all less than 1.
As E increases, the values of
Z decrease, and finally reach

Z, a minimum at a specific point.
o 0.1o Z ,E If the computations were con-

tinued, it would be observed
Fig. 13. that the numbers for Z would

oscillate while decreasing,
the amplitude of the wave
converging to zero.

36. As a comparison, we will also calculate how the tech-
nical constant T based on the focal lengths depends on e in these
three cases.

In the case of pure spherical aberration,

R (76)V) = 1.589(

is acquired directly from the previously derived expressions.
In the case of typical zonal aberration,

S2= 2.533 - = 1.594 • (77)

With many zones, /114

'= x, cos2srnq= V2cos2xnq

the focal-length :deviations

A F-dh =- 4 V2.v (F) n sin 2rnq

,--4)/2Zr * nsin2xne'.

are obtained.

For simplicity, we take AO = 0.. It is not hard to see
that as n increases, the movable plane defined in this way:
approaches the movable plane in which T attains its minimum.
We therefore obtain
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T) 4. - 10 A - A. I

=16 2* 10 1' I sin 2ne de.
O

If we set v = 2p/n, break up the interval of integration into
subintervals determined by the zeros of the integrand, and
integrate by parts, we find

5T) R n 22+ +

+ 2 [c (V2)-- c (4) + c (V6) - + + (V4-n- 2)] -c(V4n)

where

'f (V) COS V2 dv'c () = cos v dV
0

is the well-known Fresnel integral, for which tables have been
given in many optical works (cf. [17]).

For different values of n, we obtain

n- 1, T a= 1.527 o,
/115

n= 2, $ 8)= 3.031-= 2.1.516

n=3, '3f)=4.5411 = 31.514 10 (78)

n = 4, Ta) = 6.050 = 4 1.512 10-

If n is very large, then

1 On o 1+ [1.508 n1[1 + (79)

where
lim 0.

From these numerical examples, it is evident that T increases
in rough proportion to the number of zones, while E remains con-
stant. Since, if e is small, the same values of e correspond
to roughly equal values of Z, this indicates that the technical
constants of Strehl and Lehmann can provide a quite contrasting
picture of the correctness of the objective.
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Assessing Objectives on the Basis of the Technical Constants

37. Starting from well-known facts and our calculations
so far, we will now attempt to present the principles on which
objectives can be judged. We first assume that there will be
high demands made on the objective, as will usually be the case
for an astronomical objective.

In a diffraction pattern produced by an ideal objective,
the light intensity in the central disk is 84% of the entire
light energy passing through the objective [181. The remainder /116
of the light is distributed over the interference rings, which
appear around the central disk. Keeping in mind that the light
intensity even at the brightest spot in the first interference
ring is only 1/60 of the light intensity at the center of the
diffraction pattern, and that the light intensity in the remain-
ing rings drops off sharply, it is clear that observation will
deal almost exclusively with the central disk of the diffraction
pattern and that its light intensity and diameter will determine
the power of the objective. The situation will not be altered
as long as the objective has zonal aberrations which are so small
that the brightness of the central disk continues to dominate,
and provides the actual image. Since the diameter of the central
disk depends in a complicated fashion on the zonal aberrations,
and, as mentioned previously, is once in a while even smaller
than in the diffraction pattern of the ideal objective, the
possibility remains that the light intensity of the central disk,
compared to the light intensity of the central disk in the pattern
produced by an ideal objective of the same type, can be viewed as
a standard for the technical perfection of the objective. Since
it would generally be tedious to calculate this number, one must
content oneself with ascertaining just the brightness of the center
of the image, which will be roughly proportional to the intensity
of the entire central disk. In this fashion, one arrives at the
technical constant Z defined by Strehl.

This shows that an objective will certainly be a good one
if Z has a value close to unity, no matter what the form
of the light front. For an ideal objective, Z = 1 exactly. An
answer to the question of how much less than unity Z can be without
the objective losing its ranking as a first-class lens is best
sought empirically, namely by determining the constant Z for the
largest possible number of modern objectives, the properties of
which have been established by thorough examinations. In Table /117
XXIX, I have collected my calculated values of Z for several
objectives. For most of the objectives in the table, Z is about
2/3 and above. All these objectives have been considered
first-class.

If Z is only a small fraction of unity, only a small fraction
of the entire light energy is concentrated in the central disk of
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the diffraction pattern, and the remainder is distributed over
the surrounding interference rings and makes them noticeably
brighter. The central disk thereforeloses its dominant position,
and the pattern no longer has the form characteristic of a good
one. It is clear that the objective is then not good enough
for exact observations, e.g. perceiving fine surface details of
planets, separating close doubles, etc. In these cases, the
magnifications employed with the objective must be weak enough
that the central disk of the pattern and the interference rings
blur into a single image. Since the quality of the image also
depends on the distribution of'the light over the interference
rings, and Z gives no information about that, the number Z can
no longer be considered a standard for comparing objectives with
such great aberrations. If the Z of an objective intended for
precise observations is very small, however, a more detailed
classification is not necessary, and the objective can simply
be labeled unsatisfactory. It would not matter whether Z was
e.g. 0.01 or 0.05.

Earlier, it was pointed out that the mean deviation E
of the wave front can also be viewed as a standard in judging
the quality of an objective. This claim is supported by my
three typical examples, which represent very different:.types of
zonal aberrations. In these illustrations, we discovered that
a specific value of E corresponded to roughly identical values
of Z in these three different cases. The difference was not /118
appreciable until s was so large that the corresponding Z was
only a small fraction of unity. However, as we have just noted,
the precise calculation of Strehl's constant is no longer sig-
nificant in that case. The mean deviation s of the wave front
therefore proves to be a suitable measure of the perfection of
objectives intended for fine observations, for the same reasons
as for Strehl's constant Z. Not only is s much simpler to
calculate than Z, a very good approximation to Z can also be
obtained from e with the aid of Table XXVI as long as e is not
too large. Since pure spherical aberration is the most frequent
zonal aberration, using the value Z1 seems like a good idea.
Even in the case that s is large, it is stillto a certain extent
a suitable measure for the quality of an objective, since under-
standably, the larger e, the poorer the objective in general. 2

2Nonetheless, it is possible to- construct cases in which Z = 1,
although s is large. Such a case is e.g. a wave front formed
by two concentric spherical-surface sections, with a phase
difference equal to the wavelength of the light. Of course,
such a case does not occur in practice unless it is specially
arranged.
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38. Starting from the diffraction-theoretic constants Z
and :, we now analyze the suitability of Lehmann's constant T
as a measure of the quality of an objlective. If E is very
small, the quality of the objective is independent of the con-
figuration of the wave front. On the other hand, our examples
have shown that T rises reughly linearly with the number of
zones if e is constant. Therefore, T does not deliver a reliable
picture of the quality of the objective, and hence is not recom-
mended as a means to classify objectives. It might be entirely /119
possible that two objectives of equal size would acquire zonal
aberrations in.refinishing giving them the same e but giving one
of'lthem a value of T five times as large as that of the other.
Such great differences may well not occur in practice. How
different the results from e and T can be in practice can be seen
from the number RT/106 e in Table XXIX. This number is based on
the distribution of zonal aberrations to the various zones. It
can therefore be considered a constant characterizing the shape
of the wave front.

This says that an objective does not necessarily have to be
a poor one even if T were relatively large. On the other hand,
if T is very small, we can be practically certain that the
objective is a first-class one, since if T is sufficiently small,
Z is close to unity. In this case we have assumed that the
wave front has no discontinuities.

We now assume we are dealing with an objective which is not
intended for purposes which will place great demands on the
objective. To this class we may assign photographic objectives /120
for terrestrial pictures, terrestrial telescopes used with weak
magnifications, and, among astronomical objectives, at any rate,
the objectives of comet-seekers and short-focal-length objectives
and mirrors for stellar photographs. Such. objectives can be
quite usable, even if the constant Z were to be small, and thus

3 1f the wave front is made up of two equally large sections of
concentric spheres, between which there is a phase difference of
one half a wavelength, the geometric focus is located at the center
of the spheres, and T = 0,. so the objective would be a good one.
In actuality, however, interference would reduce the intensity of
the light at the center of the spheres to zero, and the maximum Z
along the optical axis would be only about .0.1, so that the objec-
tive was really a poor one. By dividing a parabolic mirror into
two zones of equal size, and covering them with silver layers of
different thicknesses, this zonal aberration and others as well
similar to it can be produced in practice.
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the distribution of the light outside the optical axis as well
must be calculated in order to compare.such objectives with
one another. It is very arduous to carry out such a calculation
using diffraction theory [19], so that a retreat to geometrical
optics and to its technical constant T would be in order. If
the deviations of the wave front are so large that the influence
of the diffraction phenomenon can be neglected by comparison with
the zonal aberrations, it would naturally be legitimate to use T.
In a certain sense, therefore, the parameters Z and T are supple-
mentary, the former working well when the deviations of the wave
front are small, and the latter becoming more and more suitable
for comparing different objectives as the deviations of the wave
front increase.

The constants T and Z differ in another respect as well.
Namely, if it is applicable, the former parameter can be used to
compare objectives of different sizes, while the constant Z
expresses only the ratio of the power of an objective to that
of an ideal objective of the same dimensions. Objectives of
different sizes can be compared using Z in the following fashion.
As as observed earlier at one point, the intensity of light in
the central disk of the diffraction pattern can be considered
proportional to Z in first approximation. Since the light /121
intensity in the pattern of an ideal objective is proportional
to the square of the diameter D of the objective, the intensity
in the central disk of the objective is proportional to the
expression ZD 2 . This expression can also be viewed as a measure
of the quality of an objective. For greater convenience, it
may be replaced by its square root D/Z-, which gives the diameter
of the ideal lens for which the intensity of the light in the
central disk of the pattern is the same as that in the central
disk of the pattern of the objective in question. The number DV/
we term the effective diameter of the objective. With this
number, it is possible to classify objectives intended for fine
measurements but with different dimensions, and in fact, the
objectives can be grouped by light intensity, while in the
classification by T, if legitimate, the objectives can be grouped
by the diameter of the patterns.

Applications

39. The methods described in this report for assessing
the quality of objectives were applied to the objectives given
in the following summary; I found the zonal aberrations for
these objectives in the literature. The figures on most of the
objectives mentioned in the list are taken from the publication
of Hartmann cited in the Introduction. The only mirror I include
is the one I ground myself, since I have encountered hardly any
numbers referring to the aberrations of mirrors in the literature.
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TABLE XXVII. /122

N .Observa'- Opfician Typ F: Source
tory M L

rm .Im.
1I Yerkes Clark Vis. 101.6i9:l5l 19.0 Publ. Potsdam 46
21 Potsdam Steinhcil :Phot 80 1219 15.2
31 Pulkovo Clark Vis. 76 2 1.12 18.5

S,4/ Vienna-Wihring Grubb . 67.3 1030 15.4
51! erlin-Bab. Zeiss 65I 1039116.0 Ver6ff. Berl.-Bab.III
6 Potsdam Steinheil 50 1256 25.1 Publ. Potsdam 46

Strassbur Mr . . 49 692 14.1 A. N. 202, 4830
8i Berlin-Bab. Steinheil Phot. 40 550 13.8 Ver6ff. erl.-Bab.III
9i Ottawa Brashear Vis. 38.1 570 15.0 Publ. Potsdam 46

101 Potsdam Stcinheil Phot. 32.51 341 10.6
II1 Potsdam Steinheil Vis. :4) :xi3 12.1

1 liI ennaWifhring Clark . 30 480 16.0 
131 Leipzig Reinfelder u. H. . 30 :wjM 12.0
14 Hamburg Merz . 25.6 302 11 8 Mitt. Hamb.-Berge-

dorf 121
15! Potsdam Grubb - '0.6' 316 15.4 Publ. Potsdam 46
1t; Helsinki Utzschn. u.

Fraunh. , -I 175 2M8 16.5 This report
17 Hel-sinki Utzschn. u.

Fraunh., - I1( 240 15.0
18 - Author Mirror 17.5: 121 6.9

Except for the three last objectives, all lenses were
studied by Hartmann's method, finding the focal-length deviations
A. The deviations of the light front h are obtained from these
values by the formula

h j f 2.f A d q

by numerical integration. To perform this calculation, I first
drew focal-length curves from the given values for A. I extrapol- /123
ated these curves toward the center and toward the edge of the
objective, and then took values of A corresponding to the zones

p2 = q = 0.02, 0.06, 0..10, ... , 0.98

from the curves. After that, I did the mechanical integration
in simple fashion by calculating the first sum in the deviations
A and multiplied the resulting numbers by 0.04. In this way,
I determined h for the zones q = 0, 0.04, 0.08, ... , 1.00.
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From the values found for h, .I calculated the mean dev.ia-
tion E of the wave front by two methods, first directly with
formula (64) and second using_formulas (63), having first com-
Puted the reduced deviations h. In all mechanical integrations,
the integrands were calculated for the zones q = 0.02, 0.06,
... , 0.98. I also found Strehl's constant Z directly from its
defining formulas (58) and (59) by mechanical integration. For
the visual objectives and the mirror, I took A = 560 nm as the
effective wavelength, and X = 430 nm for the photographic
objectives.

The configuration of the wave front is depicted graphically
in the table at the conclusion of the treatise. The abscissa
is p and the ordinate F expressed in nm. Beside each curve, the
value of e is given. The numerical values of the deviations h
are found in Table XXVIII.

For each of the above objectives, Table XXIX contains
1) the mean deviation E of the wave front, 2) the value of
Strehl's constant Z1 corresponding to the mean deviation s in
the case of pure spherical aberration, 3) the value of Z cal-
culated from the defining formulas of Strehl's constant, 4) the
effective diameter DV/, 5) the Lehmann constant T calculated by
formulas (57), 6) the previously reported Lehmann constant T', /125
and 7) the expression RT/106 e based on the form of the zonal-
aberration curves..

From the values for Strehl's constant it can be seen that
most of the objectives listed in the table are relatively good
from the point of view of zonal aberrations. Among the large
objectives, the one closest to the ideal is the 38.1-cm objective
in Ottawa and the 76.2-cm objective in Pulkowa. The 50-cm
Potsdam, the 32.5-cm (phot.) Potsdam and the 30-cm Leipzig
objectives have the smallest Strehl's constant. However, it
should be kept in mind that the deviations of the wave front for
these objectives are already so large that the reference sphere
used in calculating the mean deviation can differ appreciably /126
from the reference sphere which maximizes Z. In particular, this
is true of the Potsdam 32.5-cm objective. According to the
calculations of Wilsing [19, p. 20], the brightness at the center
of the diffraction pattern at the focus of this objective is
0.15 of the brightness at the center of an ideal objective of
corresponding size.

Comparing the values Z1 and Z in the table shows that the
difference between these two numbers is at most 0..01, as long as
the three poor objectives mentioned above are ignored. Our
earlier conjecture, namely that e.determines Z for good objec-
tives, is therefore corroborated in practice. The expression
given in the final column of the table (RT/106 E) can, as
previously mentioned, be viewed as a constant reflecting the form
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TABLE XXIX.

No! Objective . , Z DVZ 7i r f T

I Yerkes 101.6 cm s 0.67 0.68 83.7 0.20 0.16 1.8

2 Potsdam 80 47 0.62 0.'3n 63.5 0.30 0..34 2.6

3 Pulkowa 76.2 , 2 0.92 0r92 73.0 0.08 0.181 1.2

4 Vitnna- Wifhring 67.5 , ) 0.72 0.73 57.7 0.37 0.46 2.5

5 Berlin-Bab. 5 7 084 084 . 59.6 0.27 .0.22 2.4

6 Potsdam - 0 lo 101 0.23 0 ' . 27.0 1.07i 1.08 2.6

7 i Strassburg 49 49 0.73 0.74 42.1 0.35 0.34 1.8

S8 Berlin-Bab. 40 , i 0.69 0.70 33.4 0.53 048 0. .6

9 Ottawa 38.1 21 0.93 0.93 . 36.7 0.1 0.30 1.1

S10 Potsdam - 325 12: 0.08 0.(2 1.5 1.=- 1.30 1.6

11 Potsdam 30 . 15 0.77 0.77 26.3 0.42 0.44 1.4

12 4iennaWiVhring 30 59 0.64 0.64 24.0 0.79 0.84 2.0-

131 Leipzig 30 105 0.22 0.21 13.8 1.00 0.95 1.4

14; Hamburg 25.6 f59 0.64 0.65: 20.6 1.26 - 2.7

15 Potsdam 20.6 . 56 0.67 I 0 (6 16.7 1.03 0.92 1.9

16 iHelsinki 17.5 38 0.83 0.83 15.9 0.72 - 1.7

17 Helsinki 16 25 0.92 0.92 13.3 040 - 1.3

18 (Mirror) 17.5 , 16 0.97 0.97 17.2 0.35 - 1.9

of the zonal aberrations. For comparison, we repeat that this
constant is 1.59 in the case of pure spherical aberration and
2.53 for typical zonal aberration.

40. Looking at the wave fronts depicted near the end of
this report, it can be seen that certain objectives could be
brought significantly closer to the ideal objective if thg
lens aperture were stopped down in an appropriate manner.4
For instance, if the edge of the Potsdam visual 50-cm objective
is masked, leaving an aperture 44 cm in diameter (p = 0.88),
the objective can be greatly improved. In that case, namely,
e = 22 nm, Z1 = 0.94, and D/Z = 42.6 cm. The center of the
pattern is therefore considerably brighter when the objective
is partially masked than when the aperture is completely open.

The curves illustrating the wave fronts demonstrate that /127
several of the objectives in question could be successfully
corrected by refinishing. As long as the deviations of the

4For this purpose, it would be be.st to plot q on the horizontal
axis instead of p in the drawings of the wave fronts.
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light -front are known, it is easy to. tell which zones of the
objective and how much to polish. Let n be the average refrac-
tive index of the glass of an obj-ective which is to be corrected
by polishing a face. If, at this point, a layer of glass 1 unit
thick is removed, the deviation of the wave front is reduced here
by n - 1 units. Therefore, in order to suppress the deviation h
all the way to zero, a layer h/(n - 1) units of length thick must
be removed from the glass at this point.. Hence, if the devia-
tions of the light front are multiplied byl l/(n - 1), the aberration
of a face of the objective is obtained, while the other faces are
considered to be aberration-free. For mirrors, one must write
n = -1 and hence l/(n - 1) = -1/2. For lenses, the corresponding
number varies between the values 1.6 and 2.0, depending on the
refractive index. This shows that a grinding error in the surface
of a mirror causes a deviation in the light front about 3.2-4.0
times as great as a corresponding error in the surface of a lens.

The correction of zonal aberrations in an objective can be
conducted in infinitely many ways. As an illustration, we take
the Leipzig 30-cm refractor. In Fig. 14, the curve H reproduces
the light front of this refractor. To a large degree, the zonal

aberrations carry the stamp of
pure spherical aberration, and the

S0.7 spherical aberration is overcor-
HI ---- ,----, ~ rected in this case, since the

focal length of the peripheral beams
A --- nm is greater than that for the central

S.-._- beams, as can be seen immediately
---. 400 / from curve H. In the drawing, each

C - a spherical surface corresponds to a
4, parabola, and the limiting case is /128

- B  / a straight line. Three different
corrections are illustrated in the
diagram, corresponding to the cor-
rected wave fronts A, B, and C.

Fig. 14. In the first case, the center and
edge of the objective are to be

polished until the curve representing the wave front turns into
the straight line A. In the second case, polishing the peripheral
sections gives rise to the zonal-aberration curve of parabola B,
and in the third, polishing the center converts it to parabola C.
In practice, the latter case is the simplest to accomplish, in
the view of opticians. If the refinishing is achieved by polish-
ing crown glass, the difference of the ordinates for curves H
and C, multiplied by 2, is the thickness of the glass layer to
be removed from each zone. At the center of the objective,
therefore, there would be about 1.5 pm to be removed.

Refinishing just the middle sections of the objective could
also correct several other of these obj-ectives, e.g. the Potsdam
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photographic 32.5-cm objective, which has large zonal aberrations.
It is true that these aberrations could not be completely cor-
rected just by polishing the central :sections, and the zones
closer to the edge would also have to be polished, but the
remaining aberrations would not be very disturbing. Also, the
large objective of the Yerkes observatory could be corrected
by refinishing the central sections.

In this connection, I would like to mention that SchrSder, /129
in manufacturing objectives, intentionally calculated the radii
of the faces so that spherical aberration would be overcorrected.
Once all the faces of the objective had been prepared as precisely
as possible in accordance with the calculations, he refinished
the central section of the last face of the objective, until the
spherical aberration was corrected exactly. By using this pro-
cedure, he avoided the case of undercorrected spherical aberration,
which is more difficult to eliminate by refinishing. Undercorrec-
tion might well have been produced by grinding and polishing
errors than by the nonuniform density of the glass if the;
spherical aberration of the mathematically calculated objective
had been precisely equal to zero.

Five years ago, I had already produced a parabolic mirror
using the method described earlier, in which the light fronts
are used to correct the aberrations of an objective. Since, at
that time, I had not yet discovered how to ascertain the devia-
tions of the wave front directly by the interference methods,
I first determined the focal-length deviations using the previously
known procedures, and then integrated them to obtain the devia-
tions of the light front. By inspecting the latter, I immediately
saw which part of the face and how much to polish. My methods
for determining the light wave front, for which any person can
very quickly fabricate the required equipment, supplyeevery
optician with the means to check the quality of an objective with
great precision, and, by careful refinishing, to obtain objec-
tives which are practically ideal. It will not be absolutely
necessary to restrict refinishing just to the central portions
of the objective. My experience indicates that all types of
zonal aberration can be successfully refinished away, although
refinishing the center is the easiest.
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